# УДК 621.937

# Д.А. СТЕПАНЕНКО, В.Т. МИНЧЕНЯ, Н.Т. МИНЧЕНЯ, кандидаты техн. наук Белорусский национальный технический университет, Минск

# ИССЛЕДОВАНИЕ ПРОДОЛЬНЫХ КОЛЕБАНИЙ ГИБКИХ УЛЬТРАЗВУКОВЫХ ВОЛНОВОДОВ С ПОМОЩЬЮ МЕТОДА ПЕРЕДАТОЧНЫХ МАТРИЦ

В статье рассмотрено применение метода передаточных матриц для расчета резонансных частот продольных колебаний гибких ультразвуковых волноводов. Корректность и эффективность предложенной методики подтверждены путем моделирования методом конечных элементов, а также результатами экспериментальных исследований

Ключевые слова: ультразвук, волновод, передаточная матрица, метод конечных элементов

#### Введение

В ряде случаев при анализе сложных систем удобно представлять их в виде связанных между собой элементов, а свойства системы в целом описывать через свойства ее элементов. Такой подход широко используется, например, в теории автоматического управления, где сложные системы управления представляются в виде связанных между собой звеньев, а по известным передаточным функциям звеньев определяются свойства всей системы. В данной статье подобный метод рассматривается применительно к расчету резонансных частот продольных колебаний комбинированных гибких ультразвуковых волноводов, состоящих из нескольких участков постоянного сечения (ступеней), связанных между собой переходными участками переменного сечения. Схема конструкции такого волновода приведена на рисунке 1 *а*.

Разбиение волновода на элементы осуществляется в соответствии с законом изменения его поперечного сечения. В частности, для изображенного на рисунке 1 *а* волновода выделяется 6 участков: ступени 1—3, переходные участки 4 и 5 и головка 6.

#### Методика расчета

В качестве характеристики каждого из элементов (участков) волновода будем рассматривать его передаточную матрицу T(L), которую для продольных колебаний определим соотношением:

$$\begin{pmatrix} \xi(L) \\ \xi'(L) \end{pmatrix} = \mathbf{T}(L) \begin{pmatrix} \xi(0) \\ \xi'(0) \end{pmatrix}$$

где L — длина рассматриваемого участка,  $\xi(0)$  и  $\xi'(0)$  — амплитуда колебательных смещений и удельных деформаций во входном сечении рассматриваемого участка,  $\xi(L)$  и  $\xi'(L)$  — амплитуда колебательных смещений и

удельных деформаций в выходном сечении рассматриваемого участка. Начало системы координат совмещается при расчете передаточных матриц с входным поперечным сечением рассматриваемого участка волновода.

Метод передаточных матриц традиционно используется для исследования ультразвуковых колебательных систем изгибных колебаний [1—4], однако, как будет показано ниже, он дает ряд преимуществ по сравнению с другими методами расчета и в случае продольных колебаний.

Продольные колебания любого из участков волновода описываются уравнением Вебстера [5]:



Рисунок 1 — Гибкий ультразвуковой волновод: *a*) схема конструкции; *б*) конструкция головки

$$\xi'' + (\ln S)'\xi' + k^2\xi = 0, \tag{1}$$

где S(x) — площадь поперечного сечения рассматриваемого участка,  $k=2\pi f/c$  — волновое число (f — частота колебаний, c — скорость продольных ультразвуковых волн в материале волновода).

Передаточную матрицу переходного участка можно представить в виде:

$$\mathbf{T}_{t} = \begin{pmatrix} \tilde{\xi}^{(1)}(\Delta L) & \tilde{\xi}^{(2)}(\Delta L) \\ \tilde{\xi}^{(1)'}(\Delta L) & \tilde{\xi}^{(2)'}(\Delta L) \end{pmatrix}$$

где  $\tilde{\xi}^{(1)}(x) = \xi^{(1)}(x)/\xi^{(1)}(0)$ ;  $\tilde{\xi}^{(2)}(x) = \xi^{(2)}(x)/\xi^{(2)'}(0)$ ;  $\xi^{(1)}(x)$  и  $\xi^{(2)}(x)$  — частные решения уравнения (1) при граничных условиях  $\xi(0)=1$ ,  $\xi'(0)=0$  и  $\xi(0)=0$ ,  $\xi'(0)=1$ ;  $\Delta L$  — длина переходного участка.

Передаточная матрица волновода с постоянным поперечным сечением (ступени комбинированного волновода) имеет вид:

$$\mathbf{T}(L) = \begin{pmatrix} \cos(kL) & \frac{\sin(kL)}{k} \\ -k\sin(kL) & \cos(kL) \end{pmatrix},$$

где *L* — длина ступени.

Если рассматривать задачу анализа, то есть расчета собственных частот и форм колебаний волновода с заданными геометрическими параметрами и свойствами материала, то передаточные матрицы всех участков волновода становятся функциями частоты *f* колебаний. В этом случае общая передаточная матрица трехступенчатого волновода принимает вид:

$$\mathbf{T}(f) = \mathbf{T}_{h}(f)\mathbf{T}_{3}(f)\mathbf{T}_{t2}(f)\mathbf{T}_{2}(f)\mathbf{T}_{t1}(f)\mathbf{T}_{1}(f),$$

где  $\mathbf{T}_i(f)$  — передаточная матрица *i*-ой ступени волновода,  $\mathbf{T}_i(f)$  — передаточная матрица *i*-го переходного участка,  $\mathbf{T}_i(f)$  — передаточная матрица головки волновода.

Как видно из рисунка 1 б, головка волновода состоит из сферической части и переходного участка, связывающего ее с третьей ступенью волновода. Определение передаточной матрицы головки затрудняется тем, что площадь выходного сечения головки обращается в нуль. Если связать систему координат Ох с входным поперечным сечением головки, то изменение площади поперечного сечения сферической части будет описываться уравнением:

$$S(x) = \pi (r_h^2 - (x - \Delta L)^2),$$

где  $r_h$  — радиус головки, откуда можно найти производную площади  $S'(\Delta L + r_h)$  в выходном сечении головки:

$$S'(\Delta L+r_h)=-2\pi r_h.$$

Таким образом, несмотря на то, что производная функции, описывающей изменение диаметра поперечного сечения головки, обращается в бесконечность в точке  $\xi'(\Delta L + r_h)=0$ , производная площади принимает в этой точке конечное значение.

Для дальнейшего анализа представим уравнение (1) в виде:

$$S\xi'' + S'\xi' + k^2 S\xi = 0,$$

откуда с учетом соотношений  $S'(r_h) = -2\pi r_h$ ,  $S(\Delta L + r_h) = 0$  получим равенство:

$$\xi'(\Delta L+r_h)=0.$$

Данное равенство является естественным граничным условием для резонансного волновода, однако в рассматриваемом случае оно должно выполняться независимо от того, находится волновод в резонансе или нет. Рассмотрим частное решение  $\xi^{(1)}(x)$  уравнения (1) в системе координат Ox, начало которой находится в выходном сечении головки волновода, при граничных условиях:  $\xi(0)=1, \xi'(0)=0.$  (2)

 $\xi(0)=1, \xi(0)=0.$  (2)

Так как одно из этих граничных условий ( $\zeta'(0)=0$ ) должно выполняться для любых параметров волновода, любые физически реализуемые граничные условия будут находиться в линейной зависимости с условиями (2), в связи с чем общее решение уравнения (1) может быть выражено через одну базисную функцию:

$$\xi(x) = \xi(0) \frac{\xi^{(1)}(x)}{\xi^{(1)}(0)}.$$

Производная решения имеет вид:

$$\xi'(x) = \xi(0) \frac{\xi^{(1)}(x)}{\xi^{(1)}(0)}.$$

Для входного сечения головки волновода с координатой  $x=\Delta L+r_h$  получим следующие значения решения и его производной:

$$\xi(\Delta L + r_h) = \xi(0) \frac{\xi^{(1)}(\Delta L + r_h)}{\xi^{(1)}(0)},$$
  
$$\xi'(\Delta L + r_h) = \xi(0) \frac{\xi^{(1)'}(\Delta L + r_h)}{\xi^{(1)}(0)}.$$
 (3)

Решение  $\xi(x)$  уравнения (1) и его производная  $\xi'(x)$  в системе координат *Ох* могут быть представлены в виде:

$$\xi(x) = \xi(\Delta L + r_h - x),$$

$$\frac{d\xi}{dx} = \frac{d\xi(\Delta L + r_h - x)}{dx} = -\frac{d\xi(\Delta L + r_h - x)}{d(\Delta L + r_h - x)} = -\frac{d\xi}{dx}$$

что позволяет записать уравнения (3) в форме:

$$\xi(\Delta L + r_h) = \xi(0) \frac{\xi^{(1)}(0)}{\xi^{(1)}(\Delta L + r_h)},$$
  
$$\xi(\Delta L + r_h) = -\xi'(0) \frac{\xi^{(1)}(0)}{\xi^{(1)'}(\Delta L + r_h)}.$$

Из этих уравнений следует линейная зависимость между величинами  $\xi(0)$  и  $\xi'(0)$ :

$$\xi(0) \frac{\xi^{(1)'}(\Delta L + r_h)}{\xi^{(1)}(\Delta L + r_h)} + \xi'(0) = 0.$$
(4)

Величина  $\xi'(\Delta L + r_h)$  может быть представлена с помощью передаточной матрицы в виде:

$$\xi'(\Delta L + r_h) = T_{h21}(f)\xi(0) + T_{h22}(f)\xi'(0), \qquad (5)$$

где величина  $T_{h22}(f)$  должна быть безразмерной, а величина  $T_{h21}(f)$  должна иметь размерность м<sup>-1</sup>.

Из выражения (5) с учетом граничного условия  $\xi'(\Delta L + r_b)$  следует уравнение:

$$T_{h21}(f)\xi(0) + T_{h22}(f)\xi'(0) = 0,$$
(6)

которое по своей форме аналогично уравнению (4).

Так как коэффициенты уравнения (4) имеют подходящие размерности, то можно приравнять соответствующие коэффициенты уравнений (4) и (6):

$$T_{h21}(f) = \frac{\xi^{(1)'}(\Delta L + r_h)}{\xi^{(1)}(\Delta L + r_h)}, \ T_{h22}(f) = 1$$

Это позволяет окончательно представить передаточную матрицу головки в виде:

$$\begin{pmatrix} \xi(\Delta L + r_h) \\ \xi'(\Delta L + r_h) \end{pmatrix} = \begin{pmatrix} \frac{\xi^{(1)}(0)}{\xi^{(1)}(\Delta L + r_h)} & 0 \\ \frac{\xi^{(1)'}(\Delta L + r_h)}{\xi^{(1)}(\Delta L + r_h)} & 1 \end{pmatrix} \begin{pmatrix} \xi(0) \\ \xi'(0) \end{pmatrix}.$$

Для резонансного волновода  $\xi'(0) = \xi'(L) = 0$ , что приводит к системе уравнений:

$$\begin{pmatrix} \xi(L) \\ 0 \end{pmatrix} = \begin{pmatrix} T_{11}(f) & T_{12}(f) \\ T_{21}(f) & T_{22}(f) \end{pmatrix} \begin{pmatrix} \xi(0) \\ 0 \end{pmatrix}$$

Из второго уравнения системы следует условие резонанса:

 $T_{21}(f) = 0.$ 

При этом амплитуде колебаний  $\xi(0)$  во входном сечении волновода можно придавать произвольное значение. Амплитуда колебаний  $\xi(L)$  в выходном сечении волновода связана с амплитудой  $\xi(0)$  первым уравнением системы:

$$\xi(L) = T_{11}(f)\xi(0).$$

Из этого уравнения вытекает физический смысл элемента T<sub>11</sub>(f) передаточной матрицы: он представляет собой коэффициент усиления колебаний по амплитуде.

Для отыскания базисной функции  $\xi^{(1)}(x)$  методом Рунге-Кутта необходимо представить уравнение (1) в виде эквивалентной системы дифференциальных уравнений первого порядка:

٢.

$$\begin{cases} \frac{du_1}{dx} = u_2 \\ \frac{du_2}{dx} = -\frac{2d'}{d}u_2 - k^2 u_1 \end{cases}$$
(7)

с начальными условиями:

$$u_1(0)=1, u_2(0)=0,$$

где  $u_1 = \xi$ ,  $u_2 = \frac{d\xi}{dx}$ , d(x) - функция, описывающая изме-

нение диаметра поперечного сечения головки, или в векторной форме:

$$\frac{d\mathbf{u}}{d\mathbf{x}} = F(\mathbf{x}, \mathbf{u}), \ \mathbf{u}(0) = \begin{pmatrix} 1\\ 0 \end{pmatrix}.$$

На первом шаге метода Рунге-Кутта требуется вычисление значения вектор-функции F(x, u) в точке x=0. Это затрудняется тем, что значение выражения  $-\frac{2d'}{d}u_2 - k^2u_1$  в точке x=0 не определено. Дей-

ствительно, так как при х≤*r*, выполняются равенства

$$d(\mathbf{x}) = 2\sqrt{r_h^2 - (\mathbf{x} - r_h)^2}, \ d'(\mathbf{x}) = \frac{2(r_h - \mathbf{x})}{\sqrt{r_h^2 - (\mathbf{x} - r_h)^2}}, \ \text{to} \ \frac{d(0)}{d'(0)} = 0 \ \text{M}$$

в силу граничного условия  $u_2(0)=0$  в точке x=0 возникает неопределенность вида 0/0. Для раскрытия этой неопределенности используем правило Лопиталя:

$$\lim_{x \to 0} \frac{u_2(x)}{d/d'} = \lim_{x \to 0} (r_h - x) \frac{u_2(x)}{r_h^2 - (x - r_h)^2} =$$
$$= r_h \lim_{x \to 0} \frac{u_2(x)}{r_h^2 - (x - r_h)^2} = -\frac{r_h}{2} \lim_{x \to 0} \frac{du_2/dx}{x - r_h} = \frac{u_2'(0)}{2}$$

Здесь предполагается, что производная  $u'_{2}(0)$  принимает конечное значение. Для определения этого значения рассмотрим второе уравнение системы (7) в точке x=0. С учетом полученного выражения для возникающей в точке x=0 неопределенности уравнение примет вид:

 $u'_2(0) = -u'_2(0) - k^2 u_1(0),$ откуда с учетом граничного условия  $u_1(0) = 1$  следует:  $u'_2(0) = -k^2/2.$ 

Таким образом, вектор-функция 
$$F(x, u)$$
 примет в точ-  
ке  $x=0$  значение:

$$\mathbf{F}(0,\mathbf{u}(0)) = \begin{pmatrix} 0\\ -k^2/2 \end{pmatrix}.$$

Для определения передаточных матриц переходных участков и головки волновода выполнялось численное решение уравнения (7) с необходимыми граничными условиями для ряда значений волнового числа k, соответствующих различным частотам f колебаний. Решение производилось с помощью метода Рунге-Кутта четвертого порядка с использованием программы MathCad. Изменение диаметра d(x) переходных участков описывалось полиномиальными функциями по ранее разработанной методике [6, 7]. По результатам расчета общей передаточной матрицы волновода строилась его логарифмическая резонансная характеристика  $R(f)=lg|T_{11}(f)|$ , из которой определялись резонансные частоты, при которых  $R(f) \rightarrow -\infty$ .

Для подтверждения достоверности результатов, полученных с помощью метода передаточных матриц, также были проведены экспериментальные исследования, методика которых излагается в следующем разделе, и моделирование с помощью метода конечных элементов (МКЭ) с использованием программы ANSYS. Моделирование выполнялось методом модального анализа с помощью специально разработанной программы на языке APDL (ANSYS Parametric Design Language) [8]. В качестве геометрической модели рассматривалась четверть волновода с наложением симметричных граничных условий на плоскостях разреза, однако, в отличие от ранее описанных моделей [6-8], геометрическая модель разбивалась на участки (ступени, переходные участки и головка), «склеиваемые» между собой, что позволило избежать проблем с автоматической генерацией конечных элементов, возникающих при исследовании длинных волноводов. Входное и выходное сечения волновода считались свободными, в связи с чем наложение связей в направлении оси симметрии волновода не требовалось.

#### Методика экспериментальных исследований

Для экспериментальной регистрации амплитудночастотной характеристики (АЧХ) волновода использовался специально разработанный индукционный датчик амплитуды колебаний, схема конструкции которого приведена на рисунке 2 *а*.

Датчик состоит из пластмассового корпуса 3, внутри которого установлен кольцевой постоянный магнит 4. Исследуемый волновод 1 вводится в центральное отверстие корпуса 3. Магнитный поток, создаваемый магнитом 4, проходит через полюсные наконечники 6 из магнитомягкого феррита и замыкается через волновод 1. Величина магнитного потока будет зависеть от величины зазора между полюсным наконечником и волноводом, которая будет изменяться при изгибных колебаниях волновода и в результате изменения диаметра волновода при продольных колебаниях (эффект Пуассона). Переменный магнитный поток будет индуцировать электродвижущую силу (ЭДС) в катушках 5, намотанных на полюсные наконечники. Чтобы исключить составляющую ЭДС, связанную с изгибными колебаниями волновода, катушки, намотанные на диаметрально противоположные полюс-



Рисунок 2 — Датчик амплитуды колебаний волновода: *a*) схема конструкции; *б*) схема включения

ные наконечники, включаются последовательно по встречной схеме (см. рисунок 2 б). Все элементы датчика залиты эпоксидным компаундом 2.

Для построения АЧХ колебания волновода возбуждались с помощью пьезоэлектрического ультразвукового преобразователя, на который подавалось напряжение от ультразвукового генератора, управляемого с помощью компьютера и специально разработанного программного обеспечения (ПО) [9]. Частота возбуждающего напряжения изменялась в определенном диапазоне (типично от 20 до 36 кГц), который задавался с помощью ПО. Амплитуда колебаний для каждой из частот диапазона регистрировалась с помощью описанного выше датчика. Связь генератора и датчика с компьютером осуществлялись через последовательный порт (COM-порт).

## Результаты и их обсуждение

Приведенные ниже результаты получены для волновода со следующими параметрами: длины ступеней  $L_1=0,098$  м,  $L_2=0,05$  м,  $L_3=0,29325$  м; длина переходных участков  $\Delta L=0,006$  м; радиус головки  $r_h=0,00075$  м; диаметры ступеней  $D_1=0,0015$  м,  $D_2=0,00089$  м,  $D_3=0,0005$  м; модуль упругости материала  $E=1,873\cdot10^{11}$  Па; коэффициент Пуассона v=0,28; плотность  $\rho=7800$  кг/м<sup>3</sup>.

Типичный вид экспериментальной АЧХ волновода представлен на рисунке 3.

На рисунке 4 представлена логарифмическая резонансная характеристика волновода, полученная с помощью метода передаточных матриц.

В таблице приведены значения резонансных частот продольных колебаний волновода, полученные с помощью трех методов: метода передаточных матриц, МКЭ и экспериментального метода.

Как следует из анализа приведенных данных, погрешность определения резонансных частот с использованием различных методов не превышает 3,5 %, что подтверждает корректность и эффективность разработанной методики расчета.



Рисунок 3 — Экспериментальная АЧХ волновода



Рисунок 4 — Расчетная логарифмическая резонансная характеристика волновода

Таблица — Резонансные частоты продольных колебаний волновода

| Метод определения частот  | Значения частот, кГц |      |      |      |
|---------------------------|----------------------|------|------|------|
| Метод передаточных матриц | 20,9                 | 26,5 | 30,1 | 36,0 |
| МКЭ                       | 20,6                 | 26,1 | 29,8 | 35,4 |
| Экспериментальный метод   | 21,6                 | 25,6 | 29,8 | 35,7 |

#### Выводы

 Предложена методика расчета резонансных частот продольных колебаний гибких ультразвуковых волноводов, основанная на использовании метода передаточных матриц.
 На основе сравнения результатов расчета с результатами моделирования с помощью МКЭ и экспериментальными данными показана корректность и эффективность предложенной методики.

#### Список обозначений

- *с* скорость продольной ультразвуковой волны, м/с;
- f частота колебаний, Гц;
- k волновое число, м<sup>-1</sup>;
- $L_i$  длина *i*-ой ступени, м;
- $r_{h}$  радиус головки, м;
- $\ddot{S}$  площадь поперечного сечения, м<sup>2</sup>;
- T передаточная матрица волновода;
- $T_{h}$  передаточная матрица головки;
- $\mathbf{T}_{i}$  передаточная матрица *i*-ой ступени;
- Т<sub>*i*</sub> передаточная матрица *i*-го переходного участка;
- $\Delta L$  длина переходных участков, м;
- $\xi$  амплитуда колебательных смещений, м.

## Список литературы

- Zhou, G. The performance and design of ultrasonic vibration system for flexural mode / G. Zhou // Ultrasonics. – 2000. – Vol. 38. – pp. 979–984.
- The design of an ultrasonic polishing tool by the transfer-matrix method / Z.N. Guo [et al.] // Journal of Materials Processing Technology. – 2000. – Vol. 102. – pp. 122–127.
- Experimental and theoretical research on «local resonance» in an ultrasonic honing system / X.S. Zhu // Journal of Materials Processing Technology. – 2002. – Vol. 129. – pp. 207–211.
- Квашнин, С.Е. Ультразвуковые электроакустические преобразователи и волноводы-инструменты для медицины / С.Е. Квашнин. — М.: Изд-во МГТУ, 1995. — 43 с.
- Webster, A.G. Acoustical impedance, and the theory of horns and of the phonograph // Proc. of the National Academy of Sciences of the USA. – 1919. – Vol. 5. – pp. 275–282.
- Минченя, В.Т. Линейные колебания двухступенчатого волновода-концентратора для ультразвукового тромболизиса / В.Т. Минченя, Д.А. Степаненко// Докл. НАН Беларуси. — 2009. — Т. 53; № 6. — С. 114—119.
- Stepanenko, D.A. Modeling of flexible waveguides for ultrasonic vibrations transmission: Longitudinal and flexural vibrations of non-deformed waveguide / D.A. Stepanenko, V.T. Minchenya // Ultrasonics. – 2010. – Vol. 50. – pp. 424–430.
- Bubulis, A. Semi-automatic modal analysis of flexible ultrasonic waveguides in ANSYS / A. Bubulis, V.T. Minchenya, D.A. Stepanenko // Материалы МНТК «Приборостроение—2009». — Минск, 2009. — С. 145—146.
- Минченя, В.Т. Контрольно-измерительный комплекс для гибких ультразвуковых волноводов / В.Т. Минченя, И.В. Луговой, И.В. Реут // Материалы МНТК «Приборостроение—2008». — Минск, 2008. — С. 106—107.

Stepanenko D.A., Minchenya V.T., Minchenya N.T. Investigation of longitudinal vibration of flexible ultrasonic waveguides by means of transfer-matrix method

Поступила в редакцию 02.08.2010

The article considers application of the transfer-matrix method for calculating resonant frequencies of longitudinal vibration of flexible ultrasonic waveguides. Correctness and efficiency of the suggested method are verified by finite-element modelling as well as by the results of experimental studies.