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THE FEATURES OF MODELING OF THE FRIABLE MATERIAL MOVEMENT
ALONG THE SPATIALLY VIBRATING SURFACE OF THE VIBRATORY

MACHINE WORKING MEMBER

A movement of the technologic load (TL) in the form of the friable material along the spatially vibrating plane
is considered. Dynamical and mathematical models of spatial movement of the three-mass vibratory systems —
analogues of the vibratory technologic machines on the base of the systemic approach are developed. The obtained
nonlinear interconnected differential equations can be used to control the movement of the TL by variation of the
system dynamical and kinematical parameters. Some results of the numerical experiments showing a dependence of
the vibratory displacement velocity on amplitude and frequency characteristics of the separate or combined spatial
vibrations of the vibratory machine working member (WM) are given.

Keywords: spatial vibrations of the vibratory machine working member, intensification of the material vibratory

displacement, modeling of the movement

Introduction. Many works are devoted to research
into behavior of the friable materials under action of
vibrations [1—9], but not all the aspects of the problem
are studied sufficiently. The vibratory transportation
and technologic machines and the processes related to
the friable materials are especially diverse and widely
used. The efficacy of these machines is stipulated by
the numerous constructional and dynamical factors.

In the above mentioned machines nonworking
spatial vibrations are often generated in the vibratory
technologic machines disturbing a normal mode of their
work. In this connection a problem of development of
the spatial dynamical and corresponding mathematical
models of these machines arises with the purpose of
research into influence of the nonworking (parasitic)
spatial vibrations on the proceeding technologic process.
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The nonlinear interconnected equations of move-
ment of the loaded vibratory machine allow us to
determine influence of the separate as well as combined
various vibrations on behavior of the technologic load. As
a result, correlations of the system parameters favoring
improvement of the quality and quantity of the produce
to be processed (transportation, mixing, dosing, feeding
of the friable material, etc.) can be revealed.

Building a dynamical model. A vibratory technologic
machine can be considered as a three mass vibratory
system including the elements: active mass (working
member) — M, reactive mass (vibrating exciter) — M,
material to be processed or transported — M, (figures 1, 2).

The main difference between the considered
system and classical » mass spatial system consists of
the following:

- specificity of the technologic mass M, (friable or piece
material, etc.), performing a relative movement with
respect to the mass of the working member M ; at that
the masses M| and M, perform independent movement
under action of the external source of energy and mass
M, — under action of the mass M ;

- a certain initial location of masses M,, M, and
M, relative to each other (such condition makes
asymmetric a common succession of building a mathe-
matical model of the system movement);

- the features of interaction of masses M, and M, as
connected with each other by the conventional elastic
unilateral connection (figures 1—3).

To facilitate deduction of the equations we present a
vibratory machine (figure 1) in the form of the classical
three-mass vibratory system (figure 2) considering the
above mentioned distinctive features.

Consider a field of forces acting on the system.

For obtaining a general vector and then analytical
expression of the kinetic energy we determine absolute
velocity of any material point of each mass 4, B, C.
They are connected by vectors R/., Rﬂ, I j=1,2,3
with the origins of the proper coordinate axes as well as
with the origin of the inertial coordinate system O&gC.
Besides, M, is connected with the center of gravity of

Figure 1 — Vibratory machine: I — working member;
11 — vibro-exciter; 111 — load
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Figure 2 — The three mass vibratory system — analogue
of the vibratory machine
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Figure 3 — Model of the friable material

mass M, (origin of the coordinate system Oxy z,).
This connection can be unilateral depending on the
technologic load and mode of its movement.

Velocities of points A, B, and C, have the vector
forms

V=V +0, X115 V,

i

= l702 W, X5y
. . - )
Vi =Vo +04 X Ry +V, +0, XF;.
Correspondingly, expressions for kinetic energy of
masses will have the form
0)
] J
Tj = EE(M/ )i[VAi,Bi,Ci]z’ ()

where M|, M,, M, are masses of the particles 4, B,
C; n, n, n, — number of corresponding particles;
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0, O,y ®,, — angular velocities of the correspond-
ing particles relative to the mass centers.

The rotary movements of masses M, M,, M, will
be described by directing cosines of the ship angles of
Euler [10] (ensuring little changes of Euler’s angles
at little deviations of masses) considering the angles
of inclinations of the working member vibrating
surface (o) and directions of the exciting force (j3).

For obtaining analytical expressions of movement
of the mentioned interconnected vibratory system
in space it is necessary to determine coordinates of
the mass centers, points of fastening of the elastic
elements to the masses and reduce them to one system
of coordinates. Since technologic load M, is directly
connected with the working member M, it is expedient
to choose such system O x y,z,.

The projections of coordinates of points will be
determined with the help of directing cosines of the
angles between axes of the systems of coordinates Oxy
and 0,x,y,z,. As an example we will bring expressions
of coordinates of the fastening of point 4 of the main
elastic system 1 (figure 2) in the coordinate system
O x,y,z, after dynamical displacement of masses:

Xg=Xo X NV T YV T Z V55

Yi=Vo, XN TN T4NV035 5 25
where x,, y,, 2, are coordinates of point O, (after
displacement); x,,,¥,,,%,, — coordinates of point A;
Vs wes Vygs -y Vo, — directing cosines of the angles
between axes of the coordinate systems O xy,z, and
O,x,y,z,, 1. e. between initial and dynamical locations of
the mass M, (figure 2).

For the illustration we give an analytical expression

of the kinetic energy of mass M:
1 222
T = EM‘ (x1+y,+2, )+5[(JX] cos’ o, +
2 L2
+J, sin*0,)01+(J, sina, +J, cos’a)g, [+ )
2

+J, ¥, +019,(J, —J_ )sino,, cosa,,

where J,,J,,J are moments of inertia of mass M,
about axes of the system O x,y,2,; X,, ¥, 2> 4> Vo J, —
coordinates of spatial movements of the mass M.

Expansion of the kinetic energy of mass M, has
a more complicated form since it performs a relative
movement with respect to moving mass M, (we did not
consider it necessary to bring it here).

Forinclusion ofthe TL (mass M,)in the general spatial
system (figure 2) and giving it generalized character we
present it formally as a rigid body connected to the WM
(mass M,) by the conventional elastic system 3 (figure 3)
describing elastic features of the friable material [3, 11].

At the fixed moment of time elastic system 3
(as well as 1 and 2 figures 1, 2) is decomposed into
three components describing elastic properties of the
material in the space.

The elastic system 3 is featured by the non-holding
character of its connection with the WM in dynamics.

With the help of the elastic and damping elements
internal layer characteristics of the techno-logic friable
material, interaction between layers and between
lower layer and the WM are described. It differs from
the existing models [1, 2] by the fact that it considers
all degrees of freedom, i. e. it can be included in the
model of the general spatial system (figures 1, 2) and
depending on the concrete problem reduced to the
simpler form (plane, linear, dotted).

Presentation of the TL by the rigid body (at
deduction of expressions for kinetic energy) is
stipulated by the necessity of obtaining an equation of
movement in the more generalized form not only for
translational (in this case TL would be considered as
a material point) but for rotary movements also.

Deformation of the friable TL layer is modeled by
the elastic elements with the coefficients of elasticity
K35k 55k 5, Koy k5, K (figure 3). Dissipation of energy
at deformation of the layer is taken into account
by the dampers with the coefficients of resistance
€35C,35C.35Cg35Cy35C3 (NOt shown in the figure). Thus,
direct contact of the TL and WM is replaced by the
elastic and frictional connections.

The two approaches can be used to determine
the potential forces of elastic systems of the WM and
TL depending on the displacement value. In the first
case (at small displacements) the components of the
elastic forces along the coordinate axes are determined
according to potential energy and equations of
Lagrange. In the second case (at great, for example
resonant displacements) a change in the length of the
elastic system 1 is determined and it is decomposed
into components along the coordinate axes consi-
dering the coefficient of rigidity. The dimensions of
the conventional elastic system 3 can be determined
approximately depending on the location of the TL
relative to the concrete surfaces of the WM.

Deduction of the differential equations. For
deduction of the equations of spatial movement of the
three-mass vibratory system (figures 1, 2) equation of
Lagrange of the second order is used in the form

d|JoT | 0T .
_%_Qq-i-Qq’ 4)

dt aq'

where T is the sum of the kinetic energy of masses
M, M,, M, drawn up similarly to (3) for each mass;
g — generalized coordinate taking the values x, y,,
Zyseres V3 230 015 W, @psee0y, @55 O, — potential (elastic)
forces and moments stipulated by the machine elastic
system; Qq — forces not related to deformations of
the elastic system or inertness of the vibratory system
under consideration: external (exciting) forces; weights
of gravity; forces of resistance of the type of external
friction (friction force between TL and WM).

On the base of adopted assumptions about
smallness of the rotary displacements the derivatives
of variables not greater than second order will be
considered in the equations.
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Since interaction of masses M, and M, is more
specific among the interconnected masses and M,
can have various internal structures, we will bring
here equations of movement of these masses along
the coordinate axis x (a method of deduction of the
equations of movement of all masses along other
coordinates is similar and we do not bring them here).

For mass M| we have:
(M, +M)xi+M,[(y, 2, +2y, 25—

_(bl Vs —2¢1 5’3—5’3(01 +23\|f])cosocl +

+x3c0s0,, +23c0s0, + (0, y; =201 y,—

) S ®)
Y, X, —2X,Y  + 50, + X3y )sina, | =
=Q(t)(y,sino, +cosa,;) +
+f (ky»4:4.9;,¢, 4> 4,4,),
where a, = a + b.
For mass M.:
M, [(x3+x1— 20y, )cosa, —(z;+x,y,)sina, —
_(2‘i’1 23_¢1Y3+2¢1J}3_}1(91 _¢3 )= (6)

= [N _sign(x:)+ [ (k,.q,4,4,,¢,. 4 4:4,),
where f, f* are the functions of the coordinates,
velocities and characteristics (k, ¢, and k*q, c*q) of the
elastic system and their derivatives; Q(f) — exciting
force of the vibro-exciter; “sign” — nonlinear function
depending on the sign of velocity

X3,V5,23 0 sign=1 at x3(y;,23) <0;

sign=—1 at X;(j@,i;) >0;
N, — reaction of the TL on the WM; f. — friction
coefficient between the material and surface of the
WM.

Equations (5), (6) and remaining ones, which
are not given here, describe movements of the three-
mass system (figures 1, 2) and they are interconnected
by the nonlinear summands of potential and inertial
character, while the form of connection for both
systems are similar. The only difference is in presence
of the sum of masses M, and M, in equations (5) while
only one mass M, is present in equations (6).

It should be noted that equations (5) and (6)
describe movement of the mass M, relative to M| at
constant interconnection (at constant contact), and
a potential field in the form of Q, (in the right-hand
part) is an elastic and damping characteristic of mass
M, (in the case of the friable material) and it can vary
depending on its location Q (and coefficients k; ,c;
also). Besides, dynamical dependence of M and M,
can be stepwise. In this case conditions of tossing of
the material M, on the vibrating surface M| are added
to the systems (5) and (6).

Solution of the differential equations. Some
results of solution of the equations (5) and (6) are
given in figures 4, 5 and 6. Namely, dependences of
the velocity of displacement of the friable material V,_
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vibrations y of the WM
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Figure 6 — Dependence of the material velocity on the vertical
vibrations of the WM

on the amplitude of the rotary (y and ¢) and vertical
(z,) vibrations of the WM are shown. In each case the
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resonances were provoked in the indicated directions
(in the figure 6 two resonant peaks: sub- and main
peaks are shown). As it is seen from these dependences 3
the velocity varies significantly in the range of the
resonance that indicates possibility of use of the given 4.
fact for intensification of the vibratory displacement of
the friable material. 3
Conclusions. The given spatial dynamical and
mathematical models of the system “vibro-exciter —

vibrating plane — friable material” allow studying 6
behavior of the friable material at change of the
dynamical, physical and geometric parameters of the ;

system. With the help of the presented mathematical
model influence of the non-working spatial vibrations
of the WM and other parameters of the vibro-machine
on the technologic process can be studied. This will
allow increasing a degree of its purposeful application 8.
(for example, combination of some spatial vibrations
with working vibrations increases intensity of the
technologic process).

Later on, research and development of the
constructions with the use of a combination of the

working vibrations and some spatial vibrations ensuring  10.

improvement of the technologic process (for example,
increase in the vibratory displacement velocity) are

planned. 12.
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OCOBEHHOCTU MOAEJINPOBAHUA OBVUXXEHUA
CbINYYErO MATEPUAJIA NO NPOCTPAHCTBEHHO-BUBPUPYIOLLEN
NMOBEPXHOCTU PABO4YEIO0 OPrAHA BUBPOMALLUUHDbI

Paccmomperno deuncernue mexunonoeuueckoii naepysxu (TH) 6 ude coinyueeo mamepuana Ha npoCMpancmeeH -
Ho-eubpupyrouweil naockocmu. C 2moil yeavio, Ha 0CHO8E CUCMEMHO20 N00X00a, pa3pabomansvl OUHAMUYECKAS
U mMamemamuueckas modeau npoCMPAHCMEEHHO20 OBUNCEHUST MPEeXMacco8oll KoaebamenvHol cucmemvl —
ananoea GUOPAYUOHHOU MexHoA02u4ecKol mauiuHvl. Jupgepenyuanvrole YpagHeHUus A6ASI0MCS HEAUHEUHO
83AUMOCBA3AHHBIMU U C UX NOMOUbIO MOJCHO Ynpaeasms deuxcenuem TH 6 3asucumocmu om usmenenus ou-
HaAMU4eCcKux u KUHemamu4eckux napamempog gceii cucmemst. Ilpusedenvl Hekomopble pe3yabmamsl YUCAeH-
H020 3KCnepuMeHma, noKda3vl8arouie 3a8UcCUMOCb CKOPOCMU 8UOPAUUOHHO20 nepeMeujeHus Om amMnAumyo-
HO-4acmMOmMHbIX XApaKmepucmuk 0moeabHblX U KOMOUHAYUOHHBIX NPOCMPAHCMEEHHBIX KOACOAHUL paboyeeo

opeana 6UOPOMAULUHDL.

Karoueevie cro6a: npocmpancmeentvie Konebauus paboueeo opeana 8UbPOMAULUHbL, UHMEHCUDUK AU BUOPAUUOHHOO

nepemeuieHUss Mamepuana, MooeAupoBarue OGUINCCHUS
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