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METHOD OF CALCULATING THE DYNAMIC LOADS
FROM THE AFTER-EFFECTS OF SHOCK CAPTURE OF METAL

BY ROLLS OF BLOOMING MILL

The method of determining the force factors from the dynamic aftereffect of the shock at capture of metal by rolls
of blooming mill is introduced. The differential equations of motion for the main line of the blooming mill are composed
taking into account the forces of the shock interaction taking place when the metal is captured by rolls of the mill.
By solving these equations, the formulas for calculating the dynamic moments of the elastic forces acting in the details
of the main line of the blooming mill are obtained. Analysis of the formulas shows that the value of the dynamic
moment acting on the spindle shafis of the main line of the blooming mill depends on the elastic-mass parameters
of the elements of the main line, as well as the amplitude and frequency of the shock pulse.
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Introduction. The work of the blooming mills
is characterized by a significant part of the dynamic load
of their mechanisms. The reason for this is the specific
working conditions of these mills, namely, the rolling
ofan unevenly heated billet, metal sliding towards the rolls
both during the biting and in the steady rolling process,
as well as a divergence of design parameters of the rolling
mill elements — joint clearances, difference in fixity of
the top and bottom spindle rolls. Special mention should
be made of the effect on the dynamic load of the impact
interaction of a billet and rolls during the biting, which is
the reason for the rolling schedule instability [1, 2].

The specificity of metal rolling on the blooming
mills prejudges periodical relocation of clearances
between parts of assemblies and the mechanisms
of the rolling mill roll line, which is combined with the
generation of forces of impact interaction between them.
The magnitude of these forces depends on the impact
velocity, which is particularly significant at the time
of metal biting, as well as in reverse of the main drive
motor of the rolling mill.

Impact interaction during the biting leads to violent
vibrations in the rolling mill roll line, which is a result
of secondary action of the impact biting of a billet,
and results in sharp reduction in the life service of parts
of the rolling mill [3]. Therefore, study of secondary
action of the impact biting is a very important issue.

Main part. This paper describes a method of de-
termining the dynamic moments of elastic forces acting
in parts of the main line of the blooming mill, taking

into account the impact interaction of metal and rolls
that occurs during the biting.

The blooming mill roll line consists of a main
drive motor, a pinion stand and the working rolls.
Figure 1 a illustrates a diagram of the principle line
of the blooming mill, Figure 1 b shows the calculation
scheme, and Figure 1 ¢ provides a diagram of the impact
interaction between metal and rolls during the biting.

This figure uses the following symbols: 7, — the ro-
tor moment of inertia of a main drive motor, kg/m?;
I, —the equivalent moment of inertia of the mill pinions,
kg/m?* I, — the equivalent moment of inertia of the
working rolls, kg/m?; ¢,, — the stiffness factor of the shaft
connecting the main drive motor with the pinion stand,
Nm/rad; c¢,; — the stiffness factor of a spindle section
of the rolling mill main roll, Nm/rad; M — the moment
developed by the main drive motor at the moment
of biting, Nm; M(f) — the moment of the impact
interaction forces of metal and rolls, Nm.

Let us compose the differential equations of motion
for a three-mass system [4]:

1§, =M —c,,(¢, - 9,);
1,0, = ¢, (9, —9,) —¢,3(9, —¢;); (1)
L6 = ¢y3(9, —9;) + M (1)
or
1,6, +c,(9,—9,)=M;
1,0, =€, (@, = 9,) +¢,5(9, —9;) = 0;
Iz(bs _023((92 _(Ps) =M@).

(1a)
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Figure 1 — Rolling mill roll line: ¢ — diagram of the principle
line of the blooming mill; » — calculation scheme; ¢ — diagram
of the impact interaction between metal and rolls during the biting
(1 — main drive motor; 2 — pinion stand; 3 — working rolls)

In these equations, @, ¢,, ¢, are the torque angles of
the first, second and third masses, respectively; t — time.

By applying the method of S.N. Kozhevnikov [5],
the system of differential equations (1a) can be written
in the form of the moments of elastic forces:

M12+612[%jM12—?—2M23 =C}_2M;
iy 2 !

.. I,+1
M23+C23( 2]] 3)

273

()

M, —%Mu . —%M(z).

In these equations, the external moments are direct-
ly related to the elastic moments, and not to the angles
of rotation of the masses.

Let us identify the moments of external forces in
the system (2). Generally, these moments are variables.

The moment of the main drive motor M depends
on its rotor rotation speed. At the beginning of biting,
it can be equated to the idling torque.

The moment of the impact interaction forces is de-
termined as follows:

M) = 2P(r>~f§ = P(O)D,

where P(7) is the impact interaction force acting on
the rollers during the biting; f— coefficient of friction
of metal on the rolls; D — the roll’s diameter.

The impact interaction force can be determined by
the method given in the works [6—10].

According to this method, this force is equal to:

P(t)= P, Sin pt+ P, Sin p,t,

where P, P, are the maximum values of the impact

pulse components; p,, p, — the alternating frequencies
of these components.
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Applying P(f) to the system (2), we obtain:

M, +c, BEN Mlz_q_zMzszq_zMxx;
1.1 I, I,

172

. I,+1
M23+c23(LJM23—C£M12= (22)

L, 1,

- _C.[A(Pml sin pt + P, sin p,t) fD.
3

IL+1
b= S5E)
273

C . Cx . Cx
=2 M =—2P fD; h=—=P _fD.
4 [ x.x° hl [ mlf hz I me

1 3 3

Let us introduce designations:

@ =c12(111+112]; b = _(;_2; Q= _%;
i1 2 2

Asaresult of this, the system of differential equations
takes the form as follows:

M,+aM,+bM, =C;

y 3)
M,,+a,M,+b,M,, = h sin pi+h, sin p,t.

As a result the corresponding algebraic transfor-
mations, we obtain from the equations system (3)
one fourth-order differential equation with constant
coefficients:

MY +(a,+b,)M,,+(ab, —a,b)M,, =

. . 4)
=b,c—hb, sin pt — hb, sin p,t.

By introducing designations: a, + b, = A4; a,b, —
-a,b, = B; bc = C;, -hb, = H;; —h,b, = H,, into
the differential equation (4), we have:

MY+ AM,,+BM,,=C+H, sin pt+H, sin p,t. (4a)

The obtained expression is a non-homogeneous
differential equation of fourth order with constant
coefficients.

The initial conditions for solving this equation are:

M,(0)=0; M12(0) = z)_o; M12(0) =0);

12

[0) 1
M, (0)=—-—= (1+—J,
v enl, §

where o, is an angular speed of the rotor of a main drive
motor of the rolling mill; e,, — yielding of the elastic

system; /; — the moment of inertia of the drive motor
. 1
rotor; B — coefficient, equal to: f= 1—2, here I, —
1
the equivalent moment of inertia of the mill pinions.
A secular equation for homogeneous part of the dif-
ferential equation (4a) is a bi quadratic equation [11]:
M+ AV +B=0.
This equation has four roots:

Practical calculations show that, as a rule, the roots
of the secular equation for the elastic-mass parameters
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of the elements of the main line of the rolling and tube-
rolling mills are imaginary, and therefore, homogeneous
part of the equation (4a) has the following solution:

M/, =C, cosht+C,sink,t+C, cos At +C,sinA,t,

where C,, C,, C,, C, are constants, the values of which
are determined from the initial conditions.

Partial solution of differential equations (4a), ac-
cording to the principle of superposition, is the sum
of individual partial solutions [12].

In this instance, we have:

- MY +AM,, + BM,, = C; partial solution is equal to
m/, = ¢

12 B'
- M) +AM,,+BM,, = H,sin pt; partial solution is
equal to m); = —————— sinpt.

q Popt-Apl+B P

- MY +AM,,+ BM,, = H, sin p,t; partial solution is
”_ H2

equal to m;, = A iB

—-Ap, +B

Then, the complete solution of the differential
equation (4a) will be as follows:
M, =C cosAt+C,sinA,t+C, cos At +

sin p,t.

. H
+C, smk4t+%+4—1

sinp t+
—ap+B D

5 .
+p§ A B sinp,t.

Direct substitution of the initial conditions for
this expression yields the following values of constant
coefficients:

A3 c, A C

NN B T NN R
C = |Z0%4
’ }‘2(}@_7‘?&) €

_l_(p]z_}"zzt)Hlp] +(p22—}\.i)H2])2 .

- Ap +B - Ap; + B

1

I+

1 L)?LZ ( B]
C4 2 2 +

M3 -1 e, el

L =M)H,p,

n (1722 _xg)Hzlh
- Ap +B

—Ap;+B |

Now, let us determine the values of the elastic
moment on the spindle section of the main line. To do
so, we apply the value obtained for M,, to the second
equation of the system of differential equations (2a). Asa
result of some transformations, we obtain the second
equation, which is a non-homogeneous differential
equation of second order with constant coefficients:

ﬁ]MB & (C cosAt+C,sin At +
2

Mzz"'czz( 1
213

. C H
+C,co8 At +C, sinht+—+—F—H5—

sinp f +
"B

C
+——2——sinp,t|--2(P,, Sin pj + P,, sin p,t)fD
P —Apl+B pzj 13("” i+ Eey s )
or

M, +b,M,, = %(Cl cosAt+C, sinA,f +

2

+C, cos At +C, sin k4t+%)+

+(c23 Hl c23
1, pl Ap] +B I

c H c
+( 23 2 23

mlfD] sin pt +

1, p2 Ap2 +B I,
By introducing designations:
c c c c
1 ] 1 2 ]2 2 3 Iz 3 4 ]2 1

2

P, fD] sin p,t.

C23 C H/ 023 H] c23
LB ' Lp-Ap+B I,
023 H22 _Cﬁpmsz’
I, p2 Ap,+B I
we transform the obtained differential equation into
the form as follows:
M,,+b,M,, =d, cos Mt +d,sin At +d,cos At +
+d,sin At +d;+ H| sinpt+ H; sinp,t.

dS mlfD

%)

A secular equation for homogeneous part of
the equation (5) is the following quadratic equation
k*+ b,=0, as a result of solving of which, we obtain two

imaginary roots: k,, = +,/-b,; k = \/Ei; k,= —\/Ei.

In this case, the solution of homogeneous part of
the differential equation (5) will be as follows:

M3, =D, cos kit+ D, sink ,t =

=D, cos \/EI+D2 sin\/gt,

where D,, D, are constant coefficients, which values
are obtained from the initial conditions: M,,(0) = 0

M,,(0)=—2, here , is an angular speed of the main

23
drive motor of the rolling mill; e,,
the main line’s spindle section.
Partial solution of the differential equations (5) is
obtained according to the principle of super position,
as the sum of individual partial solutions:
- M, +b,M,, =d, cos \t; partial solution is equal to:

=1/c,, — yielding of

d
(M}), = b—lz cost;

2 1

- M, +b,M,, =d,sin At; partial solution is equal to:

M), = = sinA,t;

2
bz _7"2
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- M,,+b,M,, =d,Cos\,t; partial solution is equal to:

” d
M), = b 7»2 Cos A t;
- M, +b,M,, =d,sin\,t; partial solution is equal to:

” d
(M), = !

sin A f;
b, -\ ?

- M,, +b,M,, = d;;partialsolutionisequal to: (M), = b—5;
2

- My, +b,M,, = H/sin p; partial solution is equal to:
M5, = sin

2 1
- M,,+b,M,, = H] sin p,t; partial solution is equal to:
M), = h, [;[, sin p,t.

Then, complete solution of the differential equa-
tion (5) will be as follows:

M,,= Dcos\/7t+D s1n\/7t+

coskt+

d
+ sin A f+—== coshf+—2=sink s+ (6
—7»2 —7&2 b,~A; 4+ (60
+£+ / 5 sinpt + , sin p,t
bz b Pl 1 2 —p22 .

Direct substitution of the initial conditions for
this expression yields the following values of constant
coefficients:

dl d3 dS
=77 .t -0
Al —b, A;—b, b,
D - % d,\, d,\,
: em/b’ - b)\/’ (A2 —b )\/’
H/p, Hp,

T b)f (p2—b,)\b,

Then, complete solution of the differential equa-
tion (5) will be as follows:

d d,
MB:(V—]b kz—b Jcosft+

2

+[ (,00 d7& dk + H]pl
eB( (- b)ﬁ - b)( (p; b)f

Hip,

d,
sin/b,t + —— cos A, +
- b)fJ b b=\

2smkt+ 2coskt+

4
—A; b, —\;
ds 7 ’
+=24 sin pf+
b, b, pl b, - pz

sinA,f+
b A

sin p,t.

The expressions obtained make it possible to de-
termine the values of the dynamic moments in the ma-
in cogging mill train, taking into account the impact
interaction forces during the biting.

46

Numerical Illustration. Let us calculate the dynamic
elastic moments in the main cogging mill train with the
following parameters:

- the power of the main drive motor — 5,150 kW,
- rotation frequency — (0—50—120) rpm;
- nominal moment (torque rating) — 110 Tm;
- idling torque of the drive motor — 3 Tm = 3-10* Nm;
- roll diameter — 0.8 m;

- the moment of inertia of the motor armature —
92,000 kg-m?;
- the moment of inertia of the mill pinions —
5,800 kg m?;
- the moment of inertia of the working mills —
5,400 kg m?;
- the stiffness factor of the first section of the rolling
mill — 2.0-10% Nm/rad;
- the stiffness factor of the spindle section —
1.1-108 Nm/rad;
- impact pulse parameters:

P(1) =
=2.87-10" sin 4507 +2.28-10° sin 140¢;
= 28710 H; P, =

P, sinpit+ P, sinp,t=

- the peak values of pulse: P,
=2.28-10°H;

- the alternating frequencies of the pulse components:
p, =450sec™!, p, =140 sec™!;

- the maximum impact force value passage time —
0,01 sec;

- friction coefficient of rolling metal on the rolls — 0,35.

Calculation of elastic moment of the first section of
the working line of mill.

1. Substituting the values of given data into co-
efficient formulae of the differential equation (4a),
we determine these coefficients; their numerical values
are below:

a, =3.67-10% b, =-3.45-10% a,=-1.89-10%
b, =3.93-10% ¢ =0.65-10% h, = —1.64-10%
hy,=-1.3-10"4=7.6-10% B=7.9-108%;
C=2.55-10"% H,=-5.65-10"%; H,=—-4.48-10".

2. Composing the differential equation:
MY +7.6-10° M, +7.9-10° M,, = 2.55-10" —
—5.65-10" sin 450¢ — 4.48-10"* sin 140.

The initial conditions to solve this equation are as
follows:

5
M,,(0)=0; MIZ(O)—e = —=10%
M, (0)=0; M,(0)=- ( )
2
=— 7852 ( ! )— —2.44-10"7,
(0.5-107)%-92,000 8,214
h = oep=—= =0.5-10%;
ere o, 5 sec!; e, e 2010
B= L __ 92,000 =8.214.
L,+1, 5800+5,400
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3. Compose a secular equation for homogeneous
part of the differential equation:

A+ 7.6-10°02+7.9-108 = 0.

This equation has four roots:

A =-3.8-10" £/14.44-10° = 7.9-10° =
=-3.8-10°£2.56-10%; A, =+/-1.24-10" =+111;;
hyy = £4=6.36-10° = +25i.

4. The roots of a secular equation turned out ima-
ginary, and thus homogeneous part of the equation
possesses the following solution:

M/, =C, cos1llt+C,sin111z+

+C; cos 252t + C, sin 2521.

5. Using the principle of superposition, find the par-
ticular solutions of the differential equation:

M +7.6-10'M,+7.9-10°M,, =2.55-10"*;
, 2.55-10”

=2 =0.32:10%
"= 9000
M +7.6-10°M,,+7.9-10°M,,=~5.65-10"sin 4501;
- (-5.65)-10"

sin450¢7 =—178 sin450¢;

2 450727 610 450°+7.9-10°

M +7.6-10°M,,+7.9-10°M,,=—4.48-10" sin 140z
— (~4.48)-10"
27140 ~7.6-10*140*+7.9-10°
=1.42-10%sin 140¢.

6. Then, general solution of the differential equa-
tion is as follows:

M,, = C,cosht+ C,sink,t + Cicosh,t + Cysini,f +
+0.32-10* — 178sin4507 + 1.42-10%in 140z.

sin140f =

7. Using the initial conditions, determine the values
of constant coefficients:

M, = —C\sink,t+ Cyh,cosht— Cih,sinh,z +
+ C,\cosh,t — 178-450-cos4507 +
+1.42-10°-140cos 1407,

M, = —C\2cosh,t — Clsind,t— Ch2coshqt —
— CA2sin),t + 178-450%sin4507 —
—1.42-10°-140%sin 1401,

M, = CAlsink,t— Chlcosh,t + CAsind,f —
— C,\jcosh,t + 178-4503cos4507 —
—1.42-10°-140°cos 140z.

After substitution of the initial conditions, we
obtain a system of equations for the determination of
constants:

C, +C+0.32:-10*=0;
111C,+252C,=-801.28-10¢;
—-12,321C, - 63,504C, = 0;
C,+ 11.7C, = 1.44026-10°.

By solving this system, we find the following values
of constants:

C,=-3,970; C,=-9.3-10¢;
C,=1770;,C,=0.918-10°.
8. Substituting the above-mentioned values into

a common solution of the differential equation, we
obtain the expression for elastic moment:

M ,=0.32-10* - 3,970cos111¢—
—9.3-10%in1117+ 770c0s252¢+ 0.918-10°sin252¢ —
— 178sin450¢ + 1.42-10°%sin 140¢.

9. Let us determine the value of elastic moment
with a maximum value of the force of the impact:

maxM, = 0.32-10*-3,970cos1.11 -
—9.3-10%in1.11 + 770c0s2.52 + 0.918-10%sin2.52 —

— 178sin4.50 + 1.42-10°%in1.40.

By inserting numerical values of trigonometric
functions into this expression, we obtain:

maxM , = —-6.395-10° Nm = —639,500 kgm ~ —640 Tm.

Figure 2 illustrates the graph of behavior of elastic
moment, constructed with a computer program Excel.
The graph shows that the value of elastic moment with
a maximum value of the force of the impact (when
t = 0.01 sec) equals to 700 Tm (the calculated value
of this moment is 640 Tm), and the maximum value
of elastic moment is M, = 1,000 Tm.

In absolute value, these values of the dynamic
elastic moment clearly exceed the magnitude of
nominal moment of the electric motor M,,,, = 110 Tm,
confirming the significant dynamic loading of this
section of the main line of blooming mill during
the shock roll bite.

Calculation of elastic moment of the second of
the working line of mill.

1. Let us determine the coefficients of the differential
equation (5):

b,=4.54-10% d, = -0.75-10% d, = —1,764-10°
dy=0.146-10%; d, = 174-10%, d, = 0.612-10°;
H; =-168.1-105 H, = 138.96" 10%.

15000000 -+

10000000

~n LN
AW ANAN,

1 s s 0,25

5000000

0

-5000000 +%—

-100000

=1

Figure 2 — The graph of behavior of elastic moment at the section
of the electric motor-pinion stand
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2. We find the roots of a secular equation k&> + b =0,
for homogeneous part of the equation (5):

ky, = t\J=byi = +/~4.54-10* = +2.13-100i = +213i.

3. The values of constant coefficients D,, D,, deri-
ved with account for the initial conditions are equal to:
D, =0.442-10% D,=-0.0168-108.

4. Specific solutions of the differential equation (5):

(M}}), =-0.227-10* cos 111;
(M}}), =-0.0533-10% sin 1117,
(M}}), =-0.0806-10" cos 252¢;
(M}}), =-0.0096-10° sin 252,
(M}}), =0.135-10%
(M), =0.001-10° sin 450z,
(M%), =0.0054-10° sin 140
5. Compose general solution of the differential
equation (5):
M,,=0.135-10* + 0.442-10*cos2137—
—0.0168-10%sin2137—0.227-10%os111¢—
—0.0533-10%in1117-0.080610%*cos252¢—
—0.0096-10%in252¢+ 0.001 - 10%sin450¢ +
+0.0054-10%in 140z
6. The maximum value of elastic moment will be:
maxM,, =0.135-10* + 0.442-10%co0s2.13 —
—0.0168 -10%in2.13-0.227-10%cos1.11 —
—0.0533-10%in1.11 — 0.0806-10%*c0s2.52 —
—0.0096-10%sin2.52 + 0.001-10°sin4.50 +
+0.0054-10%sin 1.40;
maxM,, =—624.2335-10* Nm =
=-624,234 kgm = —624 Tm.

Figure3 illustrates the graph of behavior of elastic
moment, constructed with the computer program Excel.
The graph shows that the value of elastic moment
with a maximum value of the force of the impact (when

8000000

N A
2000000 [\ {
NENAA
Er W

17

V

Figure 3 — The graph of behavior of elastic moment at the section
of the pinion stand-working stand
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t = 0.01 sec) equals to 600 Tm (the calculated value
of this moment is 624 Tm), and the maximum value
of elastic moment is M_ =780 Tm.

And in this case, in absolute value, the values
of the dynamic elastic moment maxM,, = —624 Tm
and M, ~ —600 Tm clearly exceed the magnitude
of nominal moment of the electric motor M,,,, =
= 110 Tm, confirming the significant dynamic load-
ing of this section of the main line of blooming mill
during the shock roll bite.

Conclusion. Mathematical expressions have been
obtained for determining the dynamic moments
of the elastic forces acting in parts of the main line
of the blooming mill, taking into account the impact of
rolling metal on the roll. Analysis of these expressions
reveals that the value of the dynamic moment in the
main line of the booming mill can be reduced by
reducing the speed of the billet supplied into the rolls,
and by selecting the optimum elastic-mass parameters
of parts of the rolling mill roll line.
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METOAUKA PACHETA AUHAMUYECKUX HATPY30K
OT NOCJIEAEACTBUSA YOAPHOIO 3AXBATA METAJIJIA
BAJIKAMU OB)KMUMHOI'O CTAHA

TIpeonoxncena memoouka onpedenerust CUA08bIX PAKMOPOE OM OUHAMUHECK020 NOCAeOeCMBUs YOapHO20 3aX6a -
ma memanna Ha obxcumHuix cmanax. Cocmasnenvl oupghepenyuarvHvle ypasHeHus 08UNCeHUsL 015 2AA8HOLL AU~
HUU 00ICUMHOR0 NPOKAMHO20 CMAHA € Y4emoMm CUl YOapHO20 83auUMO0elicmasl, UMerueeo Mecmo npu 3axeame
memanna eankamu cmana. Ilymem pewienus 3mux ypasHeHui noay4eHsl opmysl 045 pacuema OUHAMU1ECKUx
MOMEHMO8 CUL YNpyeocmu, 0elcmEYIouwUx 6 0emansix eAasHoll AUHUU 00NCUMHO20 NPOKAMHO20 cmaHad. Anaiu3z
opmya nokasvigaem, Ymo 6eAUMUHA OUHAMUYECK020 MOMEHMA, 0UCMBYIoue20 Ha WNUHOeAbHbLE 8ANblL 2A1A6HOI
AUHUU 00XCUMHO0 CIMAHA, 3A8UCUM OM YNPY20-MACCOBLIX NAPAMEMPOS IAEMEHMO08 2AABHOU AUHUL, 4 MAKICE

amnaumyosi U 4acmomal YOapHo20 UMNYAbCa.

Karouesvte caosa: yoaproe é3aumooeiicmeue, dunamu4eckoe nociedeiicmeaue, ynpyeuii MOMeHm, amniumyod,

yacmoma

Crucok JuTepaTypbl

L.

JlMHaMuKa M MPOYHOCTh MPOKATHOrO 00OpYydOBaHUS: yueO.
mocooue st METALTYPr. M MalllMHOCTPOWT. BY30B M dak. /
®.K. UBanueHko [u ap.]. — M.: Metamyprusi, 1970. — 487 c.
Tetmanernr, B.B. PaivioHanbHbIe peXXUMbI paObOTHI OJIIOMUHTA /
B.B. Termanen, B.4. leBuyk. — M.: Metamnyprus, 1990. —
134 c.

[IpoxkaTHOe MPOM3BOACTBO: yued. Wi By30B Mo crel. «O00-
paboTka MeTaioB gasienueM» / [1.U. TMomyxun [u ap.]. —
2-e u3a., gom. u nepepabd. — M.: Metamtyprust, 1968. — 675 c.
Komapos, M.C. Ilunamuka MmexanuamoB 1 MamH / M.C. Ko-
MapoB. — M.: MaiuHocTpoenue, 1969. — 296 c.
KoxesHukoB, C.H. /luHamMuKa MallvuH ¢ ypyruMu 3BEHbsI-
mu / C.H. KoxeBHukoB; Akan. Hayk YCCP; MH-T yepHoit Me-
taytypruu. — Kues : M3n-Bo Akan. Hayk YCCP, 1961. — 160 c.
Anamusi, PI. OcHOBBI pallMOHAJLHOTO MPOEKTUPOBAHUS Me-
TAUTyPrMIeCKUX MAIIWH: JUHAMUYECKUE pacyeTbl U CHUHTE3
ctpykTypHbix cxem / PIL. Anamusi, B.M. Jlo6oga. — M.: Me-
Tastyprus, 1984. — 128 c.

Anamus, P.I1. MccrenoBanue cuil ynapHOTo B3aiiMOICHCTBUS
OTIPaBKM CO CTEpPXKHEM B ovare AeopMaliy aBTOMaTCTaHOB
TpybonpokaTHbiXx yctaHoBok / PII. Amamwus, C.A. Me6Go-

Hust, M.M. Mukayranze // Tp. TTIN. — Townucu, 1983. —
No 11(268). — C. 19-26.

Jlobona, B.M. OnpeneneHure napaMeTpoB yaapa Ha OCHOBE
deHoMeHoIornYecKuX Moaeei Heynpyrux cpen / B.M. Jlo-
6oma, B.b. CniuBakoBckuii // MeTalnypruieckoe MalimHOBe-
JIEHUEe U PeMOHT o6opyaoBaHusi. — Beim. 3. — M.: Merannyp-
rus, 1974. — C. 68—77.

Yuropenunse, .M. Monenb 115 yIapHOTO B3aUMOJEHCTBUS
MEXIy CIUTKOM M BaJKaMU MpoKaTHbIX ctaHoB / [.M. Yu-
Topenunse, B.b. CnuBakosckuii, [I.A. Illapamenunse //
Coo0Oienust Akajn. Hayk Ipysum. — 1981. — T. 103, Ne 1. —
C. 125-127.

Bunepman, B.JI. IMpukianHas Teopust MEXaHMYECKMX KoJieba-
HUI1 : yueO. mocobue ms By30B / BJI. Bunepman. — M.: Boicii.
K., 1972. — 416 c.

TMuckynos, H.C. IuddepeHinaibHOoe 1 MHTErpaJbHOE MC-
YUCJIEHUST U BTY30B: y4eb. mocobue mist Bry3oB. T. 2. /
H.C. IuckynoB. — 13-e uzn. — M.: Hayka, 1985. — 560 c.
Marsees, H.M. Mertonbl MHTErpupoBaHUsT OObIKHOBEHHBIX
nuddepeHunanbHbIX ypaBHeHuii / H.M. MarBeeB. — 2-e usn,
nepepab. — M.: Boicur. mik., 1963. — 546 c.

49



