Smart Search 

Title of the article



YANKOVSKII Andrei P., D. Sc. in Phys. & Math., Leading Researcher of the Laboratory “Physics of Fast Processes”, Khristianovich Institute of Theoretical and Applied Mechanics of the Russian Academy of Sciences, Novosibirsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

Year 2018 Issue 1 Pages 72–80
Type of article RAR Index UDK 539.4 Index BBK  

In the framework of the deformational theory of plasticity and in a geometrically linear formulation, the problem of inelastic bending for sandwich panels with thin reinforced bearing layers is formulated. The weakened resistance of the core to the transverse shears on base of the kinematic hypothesis of straight normal when it is independent on the rotation is considered. The linearization of the problem by the method of variable elasticity parameters is carried out. In the case of cylindrical bending the elastic-plastic behavior of the rectangular elongated three-layer composite plates with a weak honeycomb core is investigated. The analysis of the dependence of compliance in the transverse direction of such structures on the parameters of the reinforcement of load-bearing layers is carried out. It is obtained that depending on the orientation of the cells of the honeycomb core relative to the normal to the supported edge of the sandwich panels, two different mechanisms of deformation can be realized: “classical”, when the bending state dominates and “non-classical”, when the dominant influence on the deflection has a transverse shear of the core. In the second case, in the vicinity of the supported edges the edge effects, which characterize cross-section of the three-layer structure in the transverse direction, are raised. It is discovered that for nonclassical mechanism of deformation the change of the deflection of sandwich panels is depended to a lesser extent on the varying parameters of reinforcement (angles and densities) of bearing layers than on the classical mechanism of deformation of this design. It is obtained that minimal compliance of the sandwich panels is achieved by such orientation of the cells of the honeycomb core, when classical mechanism of its deformation is realized.


sandwich panel, reinforced bearing layers, elastic-plastic deformation, weakened resistance to transverse shear, influence of structure of reinforcement, honeycomb core

  You can access full text version of the article.
  • Alexsandrov A.Ya., Bryukker L.E., Kurshin L.M., Prusakov A.P. Raschyet tryekhsloinykh panelei [Calculation of Sandwich Panels]. Moscow, Oborongiz, 1960. 271 p.
  • Panin V.F., Gladkov Yu.A. Konstruktsii s zapolnitelem. Spravochnik [Structures with a filler. Reference Book]. Moscow, Mashinostroenie Publ., 1991. 272 p.
  • Noor A.K., Burton W.S., Bert Ch.W. Computational models for sandwich panels and shells. Appl. Mech. Rew., 1996, vol. 49, no. 3, pp. 155–199.
  • Vaziri A., Xue Z., Hutchinson J.W. Metal sandwich plates with polymer foam-filled cores. Journal of Mechanics of Materials and Structures, 2006, vol. 1, no. 1, pp. 97–127.
  • Zhu F., Wang Z., Lu G., Nurick G. Some theoretical considerations on dynamic response of sandwich structures under impulsive loading. International Journal of Impact Engineering, 2010, vol. 37, pp. 625–637.
  • Wilbert A., Jang W.-Y., Kyriakides S., Floccari J.F. Buckling and progressive crushing of laterally loaded honeycomb. International Journal of Solids and Structures, 2011, vol. 48, pp. 803–816.
  • Starovoitov E.I., Leonenko D.V. Deformirovanie trekhsloinogo sterzhnia v temperaturnom pole [Deformation of three-layer beams in a temperature field]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 1(22), pp. 31–35.
  • Leonenko D.V. Svobodnye kolebaniya trekhsloinykh cilindricheskikh obolochek v uprugoi srede Pasternaka [Natural vibrations of the three-layered cylindrical shells in the elastic Pasternak’s medium]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 4(25), pp. 57–59.
  • Kravchuk A.S., Tamila Y.V. Vyazkouprugii chistyi izgib sloistykh i kompozitsionnykh prizmaticheskikh brusyev [Viscoelastic pure bending layered and composite prismatic beams]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2014, no. 3(28), pp. 48–52.
  • Yahangirov A.A. Nesushchaya sposobnost usilennoi trekhsloinoi voloknistoi krugloi plastinki, zashchemlennoi po konturu i nakhodyashcheysia ne neszhimaemoi srede [Carrying capacity of reinforced three layer circular composite plate clamped on edge and lying on non-compressible foundation]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2015, no. 4(33), pp. 50–54.
  • Zhuravkov M.A., Starovoitov E.I., Leonenko D.V. Povtornoe deformirovanie uprugoplasticheskogo trekhsloinogo sterzhnia lokalnoi nagruzkoi [The second deformation of the threelayer elastoplastic rod by local load]. Mekhanika mashin,
    mekhanizmov i materialov
    [Mechanics of machines, mechanisms and materials], 2016, no. 3(36), pp. 71–79.
  • Yankovskii A.P. Neustanovivshaiasia polzhuchest sloistykh sterzhnei nereguliarnoi struktury iz nelineino-nasledstvennykh materialov [Unsteady Creep of Layered Rods of Irregular Structure from Nonlinear-hereditary Materials]. Mekhanika
    mashin, mekhanizmov i materialov
    [Mechanics of machines, mechanisms and materials], 2016, no. 3(36), pp. 87–96.
  • Yankovskii A.P. Modelirovanie dinamicheskogo uprugoplasticheskogo povedeniya balok nereguliarnoi sloisto-voloknistoi struktury [Modeling of dynamic elastic-plastic behavior of beams of irregular layered-fibrous structures]. Mekhanika
    mashin, mekhanizmov i materialov
    [Mechanics of machines, mechanisms and materials], 2017, no. 1(38), pp. 45–56.
  • Malinin N.N. Prikladnaja teoria plastichnosti i polzuchesti [The applied theory of plasticity and creep]. Moscow, Mashinostroenie Publ., 1968. 400 p.
  • Il’yushin A.A. Teoriya termovyazkouprugosti [The theory of thermo-visco-elasticity]. Trudy [Works], Moscow, Fizmatlit, 2007, vol. 3. 288 p.
  • Yankovskii A.P. Opredelenie termouprugih harakteristik prostranstvenno armirovannyh voloknistyh sred pri obshhej anizotropii materialov komponent kompozicii. 1. Strukturnaja model [Determination of the thermoelastic characteristics
    of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model]. Mehanika kompozitnyh materialov [Mechanics of composite materials], 2010, vol. 46, no. 5, pp. 451–460.
  • Yankovskii A.P. Modelirovanie termouprugogo povedeniya rebristo-armirovannykh penoplastmass. Chast 1. Utochnyennaya strukturnaya model [Thermoelastic behavior modeling of ribbed-reinforced plastic foams. Part 1. The Refined
    structural model]. Kosmonavtika i raketostroenie [Astronautics and rocket science], 2013, no. 3(72), pp. 124–132.
  • Washizu K. Variacionnye metody v teorii uprugosti i plastichnosti [Variational methods in elasticity and plasticity]. Moscow, Mir, 1987. 542 p.
  • Bazhenov V.A., Krivenko O.P., Solovei N.A. Nelineinoe deformirovanie i ustoichivost uprugikh obolochek neodnorodnoi struktury: Modeli, metody, algoritmy, maloizuchennye i novye zadachi [Nonlinear deformation and stability of elastic shells of non-uniform structure: Models, methods, algorithms, the insufficiently studied and new problems]. Moscow, Knizhnyi dom “LIBROKOM”, 2012. 336 p.
  • Bryukker L.E., Rakin A.S. Ispytania tryekhsloynykh sterzhnei pri normalnykh i povyshennykh temperaturakh [Testing of sandwich cores at normal and elevated temperatures]. Dinamika i prochnost aviacionnyh konstrukcij [Dynamics and Strength of Aviation Structures], Izdatatelstvo NGU, Novosibirsk, 1978, no. 4, pp. 73–79.
  • Karpinos D.M. Kompozitsionnye materialy. Spravochnik [Composite materials. Reference Book]. Kiev, Naukova dumka Publ., 1985. 592 p.
  • Kachanov L.M. Osnovy teorii plastichnosti [The bases of the theory of plasticity]. Moscow, Nauka, 1969. 420 p.
  • Akishev N.I., Zakirov I.I., Paimushin V.N., Shishov M.A. Teoretiko-jeksperimentalnyj metod opredelenija usrednennyh uprugih i prostranstvennyh harakteristik sotovogo zapolnitelja trehslojnyh konstrukcij [Theoretical-experimental method for determining the averaged elastic and strength characteristics of a honeycomb core of sandwich designs]. Mehanika kompozitnyh materialov [Mechanics of composite materials], 2011, vol. 47, no. 4, pp. 377–386.