Smart Search 

Title of the article



Jaroszewicz J., Doctor of Technical Sciences, Deputy Dean of the Faculty of Management. Belostock Technical University, Republic of Poland, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

Zhur K., Magister, Assistant of the Department of Management, Belostock Technical University, Republic of Poland
Year 2013 Issue 1 Pages 36-40
Type of article RAR Index UDK 62-226 Index BBK  

In actual machine building corresponding with increase rotation velocity and transmission loading in driving assembles questions calculating of vibrations characteristic of bars and shafts are very important. Inaccuracy or simplest dynamic model leads to wrong results of calculations of natural frequencies and forms. Then proposed in this paper methods Cauchy function and characteristic series gives calculation with high accuracy steps bars and shafts with a variable distribution rigidity and masses parameters.

Keywords fundamental decisions, longitudinal and transverse vibrations, Cauchy function
  You can access full text version of the article
  • Timoshenko S.P., Jang D.H., Uiver U. Kolebanija v inzhenernom dele [Fluctuations in engineering]. Moscow, Mashinostroenie Publ., 1985. 472 p.
  • Vasilenko N.V. Teorija kolebanij [Theory of oscillations]. Kiev, Vishha shkola Publ., 1992. 429 p. 
  • Maurizi M.J., Belle’s P.M. Natural frequencies of one-span beams with stepwise variable cross-section. Journal of Sound and Vibration, 1993, Vol. 168(I), pp. 184-188. 
  • Bernshtejn S.A., Keropjan K.K. Opredelenie chastot kolebanij sterzhnevyh sistem metodom spektral'noj funkcii [The definition of vibration frequencies of core systems by the spectral function]. Moscow, Gosstrojizdat Publ., 1960. 281 p. 
  • Mckedoshhena Sh.E. Novye metody integrirovanija differencialnyh uravnenij i ih prilozhenija k zadacham teorii uprugosti [New methods for integrating differential equations and their applications to problems of elasticity theory]. Moscow, Gostehizdat Publ., 1951. 
  • Cobble M.H. Finite transform solution of the general conical cantilever beams problem. Proc. 4th Techn. Meet. Soc. Eng. Sci., Raeigh, New York, 453-461, Recent Abv. Eng., 1968, Vol. 3. 
  • Suppiger E.W., Taleb N.J. Free lateral vibrations of beams of variable cross section. ZAMP, 1956, no. 6. 
  • Jaroszewicz J.L., Zoryj L. Drgania gietne belki wspornikowej o zmiennym przekroju, Rozprawy Inzynierskie, 1985, no. 33, 537-547. 
  • Jaroszewicz J., Zoryj L. Wplyw parametrow zmiennego przekroju na drgania gietne wybranych belek i walow wspornikowych. Ibid Publ., 1987, no. 35, pp. 523-534. 
  • Jaroszewicz J., Zoryj L. The method of partial discretization in free vibrations problems of circular plates with variable distribution of parameters. International Applied Mechanics, no. 42, pp. 364-373. 
  • Kukla S., Zamojska I. Free vibrations of axially loaded stepped beams by using a Green’s function method. Journal of Sound and Vibration, Vol. 300, pp. 1034-1041. 
  • Jaroszewicz J., Misiukiewicz M., Puchalski W. Limitations in application of basic frequency simplest lower estimators in investigation of natural vibrations circular plates with variable thickness and clamped edges. Journal of Theoretical and Applied Mechanics, 2008, Vol. 46, no. 1, pр. 109-121.