Smart Search 



Title of the article

PHYSICAL AND CHEMICAL STRUCTURE ANALYSIS FOR THE COMPOSITION OF MATERIALS: FROM CHEMISTRY DISORDER TO THERMODYNAMICS OF UNBALANCED STRUCTURES

Authors

KHEIFETZ Mikhail L., D. Sc. in Eng., Prof., Deputy Academician-Secretary, Chief Researcher, Presidium of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus, OJSC “NPO Center”, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KOLMAKOV Aleksei G., Corresponding Member of the RAS, D. Sc. in Eng., Deputy Director for Research, A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KLIMENKO Sergei A., D. Sc. in Eng., Prof., Deputy Director for Research, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, Kiev, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TECHNOLOGICAL MECHANICS
Year 2017 Issue 2 Pages 65–72
Type of article RAR Index UDK 621.9:536.75 Index BBK  
Abstract

The stages of the development of the physicochemical foundations of materials science are revealed, and the state and prospects of the development of nanostructured material science based on a comprehensive study of the structure of matter at various scale levels are determined. The use of complex analysis of the formation of material structures is characterized by traditional for chemistry and physics study of the balance of matter and energy flows, supplemented by an analysis of entropy formation and by physical and chemical analysis of combinatorial topology used to describe non-equilibrium phase transitions as well as by based on the synergetic approach percolation representations of fractal geometry, used to describe a complex of structures. It is shown that for the study of non-equilibrium processes of synthesis and application of micro- and nanostructured materials it is expedient to supplement the principles of physicochemical analysis: continuity principle — by considering additionally energy dissipation in the formation of structures and phases; correspondence principle — by fractal representations of geometric images; compatibility principle — by the study of possible ways of evolution of the system. This allows quantitative analyzing of transient processes described by non-integer values of the degrees of freedom of the system and the emerging structures with multi-fractal phase parameters.

Keywords

physicochemical structural analysis, chemical disorder of matter, non-equilibrium thermodynamics of processes, synergetic approach, multifractal parameters, nanostructured material

   You can access full text version of the article
Bibliography
  • Vityaz P.A., Solntsev K.A. Tehnologii konstrukcionnyh nanostrukturnyh materialov i pokrytij [Technologies of structural nanostructured materials and coatings]. Minsk, Belaruskaya navuka, 2011. 282 p.
  • Vasiliev А.С. [et al.] Tehnologicheskie osnovy upravlenija kachestvom mashin [Technological fundamentals of machine quality control]. Moscow, Mashinostroenie, 2003. 256 p.
  • Kheifetz M.L. Proektirovanie processov kombinirovannoj obrabotki [Designing the processes of combined processing]. Moscow, Mashinostroenie, 2005. 272 p.
  • Kolmakov A.G. Ispolzovanie koncepcij sistemnogo podhoda pri izuchenii deformacii i razrushenija metallicheskih materialov [Using the concepts of the system approach in the study of deformation and fracture of metallic materials]. Nelinejnyj mir [The Nonlinear World], 2006, vol. 4, no. 3, pp. 126–136.
  • Kheifetz M.L. Razvitie principov fiziko-himicheskogo analiza dlja neravnovesnyh processov sinteza i primenenija materialov [Development of principles of physical and chemical analysis for nonequilibrium processes of synthesis and application of materials]. Doklady NAN Belarusi [Reports of the National Academy of Sciences of Belarus], 2011, vol. 55, no. 4, pp. 100–105.
  • Alimarin I.P. Neorganicheskaja himija [Inorganic Chemistry]. Sovetskaja jenciklopedija [Soviet Encyclopedia], Moscow, 1975. 384 p.
  • Steinberg A.S. Reportazh iz mira splavov [Report from the world of alloys]. Moscow, Nauka, 1989. 256 p.
  • Gibbs J.V. Termodinamicheskie raboty [Thermodynamic work]. Moscow, Gostehteoretizdat, 1950. 492 p.
  • Kurnakov N.S. Vvedenie v fiziko-himicheskij analiz [Introduction to physicochemical analysis]. Moscow, AN SSSR, 1940. 564 p.
  • Goroshchenko Ya.G. Fiziko-himicheskij analiz gomogennyh i geterogennyh sistem [Physico-chemical analysis of homogeneous and heterogeneous systems]. Kiev, Naukova dumka, 1978. 490 p.
  • Pavlov N.N. Teoreticheskie osnovy obshhej himii [Theoretical Foundations of General Chemistry]. Moscow, Vysshaja shkola, 1978. 303 p.
  • Arzamasov B.N. [et al.] Nauchnye osnovy materialovedenija [Scientific foundations of materials science]. Moscow, Izdatelstvo MGTU im. N.Je. Baumana, 1994. 448 p.
  • Vityaz P.A. Tehnologicheskie i jekspluatacionnye metody obespechenija kachestva mashin [Technological and operational methods to ensure the quality of machines]. Minsk, Belaruskaya navuka, 2010. 109 p.
  • Gordienko A.I. [et al.] Sinergeticheskie aspekty fiziko-himicheskih metodov obrabotki [Synergetic aspects of physico-chemical processing methods]. Minsk, FTI; Polotsk, PGU, 2000. 172 p.
  • Vityaz P.A. [et al.] Funkcionalnye materialy na osnove nanostrukturirovannyh poroshkov gidroksida aljuminija [Functional materials based on nanostructured aluminum hydroxide powders]. Minsk, Belaruskaya navuka, 2010. 183 p.
  • Ivanova V.S. Sinergetika. Prochnost i razrushenie metallicheskih materialov [Synergetics. Strength and destruction of metallic materials]. Moscow, Nauka, 1992. 158 p.
  • Ivanova V.S. [et al.] Sinergetika i fraktaly v materialovedenii [Synergetics and fractals in materials science]. Moscow, Nauka, 1994. 383 p.
  • Kochina P.Ya. [et al.] Prostye otnoshenija v prirode. Proporcionalnost, invariantnost, podobie [Simple relationships in nature. Proportionality, invariance, similarity]. Moscow, Nauka, 1996. 205 p.
  • Vstovskiy G.V., Kolmakov A.G., Bunin I.Zh. Vvedenie v multifraktalnuju parametrizaciju struktur materialov [Introduction to multifractal parametrization of material structures]. Izhevsk, Reguljarnaja i haoticheskaja dinamika [Regular and chaotic dynamics], 2001. 116 p.
  • Mandelbrot B.B. The Fractal Geometry of Nature. New York, W.H. Freeman & Co., 1983. 470 p.
  • Feder J. Fractals. New York, Plenum Press, 1988. 310 p.
  • Bunin I.Zh. [et al.] Koncepcija fraktala v materialovedenii. Soobshhenie 1. Fraktalnaja parametrizacija struktur materialov [The concept of a fractal in materials science. Message 1. Fractal parametrization of material structures]. Materialovedenie [Material Science], 1999, no. 2, pp. 19–26.
  • Kolmakov A.G., Solntsev K.A., Vityaz P.A., Ilyushchenko A.F., Kheifets M.L., Barinov S.M. Systematic Description of Nanomaterial Structure. Inorganic Materials: Applied Research, 2013, vol. 4, no. 4, pp. 313–321.
  • Kolmakov A.G., Solntsev K.A., Vityaz P.A., Ilyushchenko A.F., Kheifets M.L., Barinov S.M. Systematic Description of Nanomaterial Structure. Inorganic Materials: Applied Research, 2013, vol. 4, no. 4, pp. 322–327.
  • Haken Н. Advances Synergetics. Berlin, Springer, 1993. 356 p.
  • Glensdorf P., Prigozhin I., Chizmadzhev Ju.A. Termodinamicheskaja teorija struktury, ustojchivosti i fluktuacii [Thermodynamic theory of structure, stability and fluctuations]. Moscow, Mir, 1973. 280 p.
  • Bunin I.Zh. Koncepcija fraktala v materialovedenii. Soobshhenie 2. Metodologija multifraktalnoj parametrizacii [The concept of fractal in materials science. Message 2. Methodology of multifractal parameterization]. Materialovedenie [Material Science], 2000, no. 1, pp. 16–25.
  • Vstovskiy G.V. Jelementy informacionnoj fiziki [Elements of Information Physics ]. Moscow, MGIU, 2002. 260 p.
  • Kulak M.I. Fraktalnaja mehanika materialov [Fractal Mechanics of Materials]. Minsk, Vysshaja shkola, 2002. 304 p.
  • Chelidze TL. Metody teorii protekanija v mehanike geomaterialov [Methods of percolation theory in the mechanics of geomaterials]. Moscow, Nauka, 1987. 136 pp.
  • Klimenko S.A., Melniychuk Yu.A., Vstovskiy G.V. Fraktalnaja parametrizacija struktury materialov, ih obrabatyvaemost rezaniem i iznosostojkost rezhushhego instrumenta [Fractal parametrization of the structure of materials, their machinability with cutting and wear resistance of the cutting tools]. Kiev, Institut sverhtverdyh materialov im. V.N. Bakulja, 2009. 184 p.
  • Vitjaz P.A. [et al.] Mnogourovnevyj sistemnyj fiziko-himicheskij, multifraktalnyj i vejvlet-analiz nanostrukturnyh materialov [Multi-level systemic physicochemical, multifractal and wavelet analysis of nanostructured materials]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2012, no. 1, pp. 53–64.
  • Anosov V.Ya., Ozerova M.I., Fialkov Yu.Ya. Osnovy fizikohimicheskogo analiza [Fundamentals of physical and chemical analysis]. Moscow, Nauka, 1976. 504 p.
  • Kheifetz M.L. Analiz processov samoorganizacii pri obrabotke metallov po diagrammam sostojanij fiziko-himicheskih sistem [Analysis of the processes of self-organization in the processing of metals on the diagrams of states of physico-chemical systems]. Doklady AN Belarusi [Reports of the Academy of Sciences of Belarus], 1995, vol. 39, no. 6. 109 p.
  • Pontryagin L.S. Osnovy kombinatornoj topologii [Fundamentals of combinatorial topology]. Moscow, Nauka, 1986. 120 p.
  • Kheifetz M.L. O samoorganizacii processov formirovanija svojstv poverhnostnogo sloja pri kombinirovannyh metodah obrabotki metallov [On the self-organization of the processes of formation of the properties of the surface layer under combined methods of metal working]. Doklady AN Belarusi [Reports of the Academy of Sciences of Belarus]. 1995, vol. 39, no. 2, pp. 109–113.
  • Berge P., Pomo I., Vidal K. Order in Chaos: On Deterministic Approach to Turbulence. Moscow, Mir, 1991. 368 p.
  • Shreder M. Fraktaly, haos, stepennye zakony. Miniatjury iz beskonechnogo raja [Fractals, chaos, power laws. Miniatures from an infinite paradise]. Izhevsk, Reguljarnaja i haoticheskaja dinamika [Regular and chaotic dynamics], 2001. 528 p.