Smart Search 



Title of the article SPECIAL FEATURES OF THE HYDROGEN-DIESEL ENGINE WORKING PROCESS
Authors

NATRIASHVILI Tamaz M., Academician of the NAS of Georgia, D. Sc. in Eng., Prof., Director, LEPL Rafiel Dvali Institute of Machine Mechanics, Tbilisi, Georgia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KAVTARADZE Revaz Z., D. Sc. in Eng., Prof., Professor of the Department “Combined Engines and Alternative Power Units”, Bauman Moscow State Technical University, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING COMPONENTS
Year 2022
Issue 1(58)
Pages 31–36
Type of article RAR
Index UDK 621.436.01
DOI https://doi.org/10.46864/1995-0470-2022-1-58-31-36
Abstract The works related to the research of the problems and prospects of a hydrogen-fueled reciprocating engine, published so far, mainly relate to the use of hydrogen in spark-ignition engines. Developments of BMW, Toyota and other manufacturers are used in production car models. However, despite a number of advantages, serial production of hydrogen-diesel engines does not yet exist. This paper presents some results of the study of the working process features of a hydrogen-diesel engine with direct injection of hydrogen gas, analyzes the problems and prospects of the concept of the hydrogen-diesel engine. The obtained results of 3D modelling of the working process and experimental research prove the prospects and reality of the implementation of the hydrogen-diesel engine concept.
Keywords hydrogen-diesel engine, direct injection, nitrogen oxides, 3D modelling
  You can access full text version of the article.
Bibliography
  1. Kavtaradze R.Z. Razvitie teorii rabochikh protsessov DVS v MGTU im. N.E. Baumana: ot metoda Grinevetskogo do sovremennykh 3D-modeley [Development of combustion theory in Bauman Technical University: from Grinevetsky method to modern 3D-models]. Dvigatelestroyeniye, 2019, no. 2(276), pp. 3–8 (in Russ.).
  2. Kavtaradze R.Z. Razvitie teorii rabochikh protsessov DVS v MGTU im. N.E. Baumana: ot metoda Grinevetskogo do sovremennykh 3D-modeley (Prodolzhenie) [Development of combustion theory in Bauman Technical University: from Grinevetsky method to modern 3D-models (Continuation)]. Dvigatelestroyeniye, 2019, no. 3(277), pp. 8–15 (in Russ.).
  3. Kavtaradze R.Z. Razvitie teorii rabochikh protsessov DVS v MGTU im. N.E. Baumana: ot metoda Grinevetskogo do sovremennykh 3D-modeley (Prodolzhenie) [Development of combustion theory in Bauman Technical University: from Grinevetsky method to modern 3D-models (Continuation)]. Dvigatelestroyeniye, 2019, no. 4(278), pp. 3–9 (in Russ.).
  4. Kavtaradze R.Z. Razvitie teorii rabochikh protsessov DVS v MGTU im. N.E. Baumana: ot metoda Grinevetskogo do sovremennykh 3D-modeley (Okonchanie) [Development of combustion theory in Bauman Technical University: from Grinevetsky method to modern 3D-models (Continuation)]. Dvigatelestroyeniye, 2020, no. 1(279), pp. 3–9 (in Russ.).
  5. Kavtaradze R., Natriashvili T., Gladyshev S. Hydrogen-diesel engine: problems and prospects of improving the working process. Proc. SAE World Congress Experience 2019, 2019. DOI: https://doi.org/10.4271/2019-01-0541.
  6. Kavtaradze R.Z. Teplofizicheskie protsessy v dizelyakh, konvertirovannykh na prirodnyy gaz i vodorod [Thermophysical processes in diesel engines converted to natural gas and hydrogen]. Moscow, Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. N.E. Baumana Publ., 2011. 238 p. (in Russ.).
  7. Kavtaradze R.Z. Teoriya porshnevykh dvigateley. Spetsialnye glavy [Theory of reciprocating engines. Special chapters]. Moscow, Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. N.E. Baumana Publ., 2016. 589 p. (in Russ.).
  8. Rottengruber H., Wiebicke U., Woschni G., Zeilinger K. Wasserstoff-Dieselmotor mit Direkteinspritzung, hoher Leistungsdichte und geringer Abgasemission. Teil 3: Versuche und Berechnungen am Motor. MTZ – Motortechnische Zeitschrift, 2000, vol. 61, iss. 2, pp. 122–128. DOI: https://doi.org/10.1007/BF03226557.
  9. Kavtaradze R.Z. Vodorodnyy dizel: problemy i perspektivy [Hydrogen-fueled diesel: problems and prospects]. Trudy yubileynoy konferentsii Natsionalnogo komiteta RAN po teplo- i massoobmenu “Fundamentalnye i prikladnye problemy teplomassoobmena” [Proc. Anniversary Conference of the National Committee of the Russian Academy of Sciences on Heat and Mass Transfer “Fundamental and applied problems of heat and mass transfer”]. Saint Petersburg, 2017, vol. 1, pp. 35–41 (in Russ.).
  10. Kavtaradze R.Z., Zeilinger K., Zitzler G. Zaderzhka vosplameneniya v dizele pri ispolzovanii razlichnykh topliv [Ignition delay in a diesel engine utilizing different fuels]. Teplofizika vysokikh temperatur, 2005, vol. 43, no. 6, pp. 947–965.
  11. Kavtaradze R.Z., Natriashvili T.M., Zelentsov A.A. Ignition delay and emission of the noxious substances in double-fuel engines working on the natural gas and syngases. Innovative methods for improvement of technical, economic and ecological efficiency of motor cars, 2015, ch. 15, pp. 109–120.
  12. FIRE. Users Manual Version 2017. AVL List GmbH, Graz (Austria), 2017.
  13. Kavtaradze R.Z., Onishchenko D.O., Zelentsov A.A., Sergeev S.S. The influence of rotational charge motion intensity on nitric oxide formation in gas-engine cylinder. International journal of heat and mass transfer, 2009, vol. 52, iss. 19–20, pp. 4308–4316. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.060.
  14. Kavtaradze R., Glonti M., Natriashvili T. Improvement of ecological characteristics of the hydrogen diesel engine. Proc. International automobile scientific forum “Intelligent transport systems”. IOP Conference Series: Materials science and engineering, 2018. DOI: https://doi.org/10.1088/1757-899X/315/1/012018.
  15. Koch D., Ebert T., Sousa A. Transformation vom Diesel zum H2-Hoch-AGR-Magerkonzept. ATZheavy duty, 2020, vol. 13, iss. 2, pp. 32–41. DOI: https://doi.org/10.1007/s35746-020-0083-x.
  16. Laiminger S., Url M., Payrhuber K., Schneider M. Wasserstoff für Gasmotoren – Kraftstoff der Zukunft. MTZ – Motortechnische Zeitschrift, 2020, vol. 81, iss. 5, pp. 66–71. DOI: https://doi.org/10.1007/s35146-020-0221-0.