Bibliography 
 Costa L., Rodrigues M.S., BensenyCases N., Mayeux V., Chevrier J. [et al.]. Spectroscopic investigation of local mechanical impedance of living cells. PLoS ONE 9(7), e101687. doi:10.1371/journal.pone.0101687.
 Kirmizis D., Logothetidis S. Atomic force microscopy probing in the measurement of cell mechanics. International Journal of Nanomedicine, 2010, vol. 5, pp. 137–145.
 Kasas S., Ikai A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophysical Journal, 1995, vol. 68, pp. 1678–1680.
 Drozd E.S., Chigik S.A., Konstantinova E.A. Atomnosilovaja mikroskopija strukturnomehanicheskih svojstv membran jeritrocitov [Atomic force microscopy of structural and mechanical properties of erythrocyte membranes]. Rossijskij
zhurnal biomehaniki [Russian Journal of Biomechanics], 1995, vol. 13(4), pp. 22–30.
 Raman A. [et al.]. Mapping nanomechanical properties of live cells using multiharmonic atomic force microscopy. Nature Nanotechnology, 2011, vol. 6, pp. 809–814.
 MartinezMartin D. [et al.]. Noninvasive protein structural exibility mapping by bimodal dynamic force microscopy. Phys Rev Lett, 2011, vol. 106, pp. 98–101.
 Sokolov I., Dokukin M.E., Guz N.V. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods, 2013, vol. 60, pp. 202–213.
 Cartagena A., Raman A. Local viscoelastic properties of live cells investigated using dynamic and quasistatic atomic force microscopy methods. Biophysical Journal, 2014, vol. 106, pp. 1033–1043.
 Radmacher M., Tillmann R., Gaub H. Imaging viscoelasticity by force modulation with the atomic force microscope. Biophysical Journal, 1993, vol. 64, pp. 735–742.
 Jonathan B., Hastings G. Biomaterial properties. Springer Science and Business Media, 1998. 590 p.
 Fung Y.C. Biomechanics: mechanical properties of living tissues. New York etc., SpringerVerlag, 1981. 430 p.
 Bae W.C. [et al.]. Indentation testing of human cartilage: sensitivity to articular surface degeneration. Arthritis Rheum., 2003, vol. 48, pp. 3382–3394.
 Broom N.D., Flachsmann R.J. Physical indicators of cartilage health: the relevance of compliance, thickness, swelling and fibrillar texture. J. Anat., 2003, vol. 202, pp. 481–494.
 Plodinec M. [et al.]. The nanomechanical signature of breast cancer. Nat Nanotechnol., 2012, vol. 7, pp. 757–765.
 Iyer S. [et al.]. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nature nanotechnology, 2009, vol. 4, pp. 389–393.
 Luque T. [et al.]. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomaterialia, 2013, vol. 9, pp. 6852–6859.
 Dimitriadis E. [et al.]. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. Journal, 2002, vol. 82(5), pp. 2798–2810.
 Zhu C., Bao G., Wang N. Cell mechanics: mechanical response, cell adhesion and molecular deformation. Annual Reviews of Biomedical Engineering, 2000, vol. 2, pp. 189–226.
 Elson E.L. Cellular mechanics as an indicator of cytoskeletal structure and function. Ann. Rev Biophys Biophys Chem., 1988, vol. 17, pp. 397–430.
 Lekka M. [et al.]. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys Journal, 1999, vol. 28, pp. 312–316.
 Kataoka N. [et al.] Measurements of endothelial celltocell and celltsubstrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2002, vol. 99(24), pp. 15638–15643.
 Pelling A.E. [et al.]. Local nanomechanical motionof the cell wall of Saccharomyces cerevisiae. Science, 2004, vol. 305, pp. 1147–1150.
 Cross S.E. [et al.]. Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2007, vol. 2(12), pp. 780–783.
 Sokolov I. Atomic force microscopy in cancer cell research. In Cancer Nanotechnology, Nanomaterials for Cancer Diagnostics and Therapy. American Scientific Publishers, Valencia, CA, USA, 2007, vol. 1, pp. 1–17.
 Morita S. [et al.]. Noncontact Atomic Force Microscopy. Springer, Berlin, 2002. 440 p.
 Haugstad G. Atomic Force Microscopy, Understanding Basic Modes and Advanced Applications. Wiley, 2012. 520 p.
 Canetta E. [et al.]. Measuring cell viscoelastic properties using a forcespectrometer: Influence of protein cytoplasm interactions. Biorheology, 2005, vol. 42(5), pp. 321–333.
 Kuznetsova T. [et al.]. Atomicforce microscopy probing of cell elasticity. Micron 38, 2007, vol. 38(8), pp. 824–833.
 Starodubtseva M.N. Mechanical properties of cells and ageing. Ageing research reviews, 2011, vol. 10(1), pp. 16–25.
 Benoit M. Cell adhesion measured by force spectroscopy on living cells. Methods Cell Biol., 2002, vol. 68, pp. 91–114.
 Benoit M., Gaub H.E. Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs, 2002, vol. 172(3), pp. 174–189
 Zhuravkov M.A. Fundamental'nye reshenija teorii uprugosti i nekotorye ih primenenija v geomehanike, mehanike gruntov i osnovanij [Fundamental solutions of the theory of elasticity and some of their applications in geomechanics, soil mechanics and foundations]. Kurs lekcij [Lectures], Minsk, BSU, 2008. 247 p. (in Russian).
 Torvik P., Bagley R.L. On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, Transactions of ASME, 1984, vol. 51(2), pp. 294–298.
 Alessandrini A., Facci P. AFM: a versatile tool in biophysics. Meas. Sci. Technol., 2005, vol. 16, pp. 65–92.Salerno M., Bykov I. Tutorial: mapping adhesion forces and calculating elasticity in contact#mode AFM. Microscopy and Analysis, 2006, vol. 20, pp. 5–8.
 Mathur A.B., Truskey G.A., Reichert W.M. Total internal reflection microscopy and atomic force microscopy (TIRFM–AFM) to study stress transduction mechanisms in endothelial cells. Critical Reviews in Biomedical Engineering, 2000, vol. 28(1–2), pp. 197–202.
 Argatov I.I., Sabina F.J. Asymptotic analysis of the substrate effect for an arbitrary indenter. The Quarterly Journal of Mechanics and Applied Mathematics, 2010, vol. 66(1), pp. 75–95.
 Argatov I.I. Depthsensing indentation of a transversely isotropic elastic layer: seconorder asymptotic models for canonical indenters. Int. Journal of Solids and Structures, 2011, vol. 48, pp. 3444–3452.
 Schinagl R.M. [et al.]. Depth#dependent confined compression modulus of fullthickness bovine articular cartilage. J. Orthop. Res, 1997, vol. 15, pp. 499–506.
 Gefen A. Cellular and biomolecular mechanics and mechanobiology. Series: Studies in Mechanobiology, Tissue Engineering and Biomaterials, SpringerVerlag Berlin Heidelberg, 2011, vol. 4. 560 p.
 Popov G.J. Koncentracija uprugih naprjazhenij vozle shtampov, razrezov, tonkih vkljuchenij i podkreplenij [Elastic stress concentration near the stamps, cuts, thin inclusions and reinforcements]. Moscow, 1982. 344 p.
 Galin L.A. Kontaktnye zadachi teorii uprugosti i vjazkouprugosti [Contact problems of the theory of elasticity and viscoelasticity]. Moscow, 1980.
 Rvachev V.L., Protsenko B.C. Kontaktnye zadachi teorii uprugosti dlja neklassicheskih oblastej [Contact problems of elasticity theory for nonclassical fields]. Kiev, 1977. 236 p. (in Russian).
 Sneddon I.N. The relation between load and penetration in the axis symmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Engng Sci., 1965, vol. 3, pp. 47–57.
 Sneddon, I. N. Fourier Transforms. McGrawHill, New York, 1951. 542p.
 Love A.E.H. Boussinesq problem for a rigid cone. Q.J. Math. (Oxfod), 1939, vol. 10, pp. 161–175.
 Amenzade Y.A. Teorija uprugosti [Theory of elasticity]. Moscow, Higher School, 1976. 272 p. (in Russian).
 Zhuravkov M., Romanova N. Review of methods and approaches for mechanical problem solutions based on fractional calculus. Mathematics and Mechanics of Solids, 2014, pp. 1–26.
 Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo porjadka i nekotorye ih prilozhenija [Integrals and derivatives of fractional order, and some applications]. Minsk, Science and Technology, 1987. 688 p. (in Russian).
 Zhuravkov M.A., Starovoytov E.I. Mehanika sploshnyh sred. teorija uprugosti i plastichnosti: uchebnoe posobie dlja studentov vysshih uchebnyh zavedenij po special'nosti ″Mehanika″ [Continuum Mechanics. Theory of elasticity and plasticity: a manual for students in higher education in the specialty ″Mechanics″]. Minsk, BSU, 2011. 543 p. (in Russian). Zhuravkov M.A. Matematicheskoe modelirovanie deformacionnyh processov v tverdyh deformiruemyh sredah (na primere zadach
mehaniki gornyh porod i massivov) [Mathematical modeling of deformation processes in solid deformable media (for example, problems in the mechanics of rocks and arrays)]. Minsk, BSU, 2002. 456 p. (in Russian).
