Smart Search 

Title of the article



YANKOVSKIY Andrei P., D. Sc. in Phys.-Math., Leading Research Scientist, Laboratory of Fast Processes Physics, Khristianovich Institute of Theoretical and Applied Mechanics the Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

Year 2017 Issue 1 Pages 45–56
Type of article RAR Index UDK 539.4 Index BBK  

In approaching the Karman the initial-boundary value problem is formulated for the dynamic elastic-plastic deformation of flexible composite beams of irregular layered-fibrous structures with account of their weakened resistance to the transverse shear. Beams consist of walls and load-bearing layers (shelves). Walls can be reinforced longitudinally or crosswise in its plane, and the shelves are reinforced in the longitudinal direction. The mechanical behavior of the component materials of the composition is described by the equations of the theory of plasticity with isotropic hardening. The explicit “cross” scheme was constructed for numerical integration of the formulated initial-boundary value problem coordinated with the step-by-step scheme and used for the simulation of elasticplastic deformation of composite material of each layer of the beam. The calculations of dynamic and quasistatic bending behavior are carried out for homogeneous and reinforced beams of I-beam cross-section. It is found that the classical theory of bending may not be acceptable to carry out such calculations for some types of metal compositions for relatively long beams. For the adequate calculation of elastoplastic deformation of composite beams of laminated-fibrous irregular structures it is necessary to use the Timoshenko theory, which takes in account the weakened resistance of the walls to the transverse shears. It is shown that in the case of dynamic loading of composite beams, the final deflections are much larger by absolute value than in the case of quasi-static loading with the same load level.


laminated beams, reinforcement, plastic flow theory, Timoshenko theory, dynamic bending, geometric nonlinearity, “cross” scheme

   You can access full text version of the article
  • Smith C.S. Design of marine structures in composite materials. London, Elsevier Applied Science, 1990.
  • Burcher R., Rydill L. Concepts in submarine design. Cambridge, Cambridge University, 1994.
  • Mouritz A.P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines. Composite Struct., 2001, vol. 53, no. 1, pp. 21–41.
  • Mikhlin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy [Constructional polymeric composite materials]. Saint Petersburg, Nauchnye osnovy i tehnologii, 2010. 822 p.
  • Schuster J., Heider D., Sharp K., Glowania M. Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites. Mechanics of Composite Materials, 2009, vol. 45, no. 2, pp. 241–254.
  • Gill S., Gupta M., Satsangi P. Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites. Frontiers of Mechanical Eng, 2013, vol. 8, no. 2, pp. 187–200.
  • Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading. Computers & Structures, 1987, vol. 26, no. 1/2, pp. 1–15.
  • Karpov V.V. Prochnost’ i ustoichivost’ podkrepljennykh obolochek vrashchenia. V 2 ch. Ch. 1. Modeli i algoritmy issledovania prochnosti i ustoichivosti podkrepljennykh obolochek vrashchenia [Strength and stability of the supported shells of rotation. In 2 parts. Part 1. Models and algorithms of research of strong and stability of the supported shells of rotation]. Moscow, Fizmatlit, 2010. 288 p.
  • Gurdal Z., Olmedo R. In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept. AIAA J., 1993, vol. 31, no. 4, pp. 751–758.
  • Muc A., Ulatowska A. Design of plates with curved fiber format. Composite Struct., 2010, vol. 92, no. 7, pp. 1728–1733.
  • Purkiss J.A., Wilson P.J., Blagojević P. Determination of the load-carrying capacity of steel fibre reinforced concrete beams. Composite Struct., 1997, vol. 38, no. 1–4, pp. 111–117.
  • Nemirovskii Yu.V., Baturin A.A. Metod raschjeta deformativnosti i prochnosti odnotavrovykh i dvutavrovykh zhelezobetonnykh sterzhnei [Method of Calculation of Deformability and Strength of the One-tee and Two-tee concrete cores]. Izvestiya
    vuzov. Stroitelstvo
    [News of higher educational institutions. Construction], 2015, no 10, pp. 82–93.
  • Nemirovskii Yu.V., Yankovskii A.P. Integrirovanie zadachi dinamicheskogo uprugoplasticheskogo izgiba armirovannykh sterzhney peremennogo poperechnogo sechenia obobshchyonnymi metodami Runge–Kutty [Integration of problem on elasto-plastic dynamic bending of reinforced cores of sections with a variable cross-section using generalized Runge–Kutta methods]. Vychislitelnye tekhnologii [Computing Technologies], 2004, vol. 9, no. 4, pp. 77–95.
  • Yankovskii A.P. Issledovanie osobennostei neuprugogo deformirovania kompozitnykh balok sloisto-voloknistoi struktury pri termosilovom nagrugenii [Investigation of Properties of Inelastic Deformation of Composite Beams of Laminated-fibrous Structures Under Thermal-force Loads]. Problemy prochnosti i plastichnosti [Problems of strength and plasticity], 2016, vol. 78, no. 2, pp. 131–144.
  • Malinin N.N. Prikladnaja teoria plastichnosti i polzuchesti [The applied theory of plasticity and creep]. Moscow, Mashinostroenie, 1968. 400 p.
  • Abrosimov N.A., Elesin A.V. Obosnovanie primenimosti makroneodnorodnykh modelej v zadachakh dinamiki mnogosloinykh kompozitnykh balok [Substantiation of applicability of macronon-uniform models in problems of dynamics multilayered ccomposites beams]. Prikladnye problemy prochnosti i plastichnosti [Applied problems of strength and plasticity], 1987, pp. 69–74.
  • Abrosimov N.A., Bazhenov V.G. Nelinejnye zadachi dinamiki kompositnykh konstrukcij [Nonlinear problems of dynamics composites designs]. Nizhniy Novgorod, Izdatelstvo NNGU, 2002. 400 p.
  • Akhmetzianov M.Kh., Gress P.V., Lazarev I.B. Soprotivlenie materialov [Resistance of materials]. Moscow, Vysshaja shkola, 2007. 333 p.
  • Perel’muter A.V., Slivker V.I. Ustoichivost’ ravnovesia konstrukcij i rodstvennye problemy [Stability of balance of designs and related problems], Moscow, SKAD SOFT, 2007. 670 p.
  • Yankovskii A.P. Neustanovivshaiasia polzhuchest’ sloistykh sterzhnei nereguliarnoi struktury iz nelineino-nasledstvennykh materialov [Unsteady Creep of Layered Rods of Irregular Structure from Nonlinear-hereditary Materials]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2016, no. 3(36), pp. 87–96.
  • Ivanov G.V., Volchkov Yu.M., Bogul’skii I.O., Anisimov S.A., Kurguzov V.D. Chislennoe reshenie dinamicheskikh zadach uprugoplasticheskogo deformirovania tverdykh tel [The numerical solution of dynamic problems elastic-plastic deformations of
    solids]. Novosibirsk, Izdatelstvo Sibirskogo universiteta, 2002. 352 p.
  • Yankovskii A.P. Primenenie yavnogo po vremeni metoda central’nykh raznostei dlia chislennogo modelirovania dinamicheskogo povedenia uprugoplasticheskikh gibkikh armirovannykh plastin [Using of Explicit Time-Central Difference Method for Numerical Simulation of Dynamic Behavior of Elasto-Plastic Flexible Reinforced Plates]. Vycisl. meh. splos. sred [Computational Continuum Mechanics], 2016, vol. 9, no. 3, pp. 279–297.
  • Samarakii A.A. Teoriya raznostnykh skhem [The theory of finite difference schemes]. Moscow, Nauka, 1989. 616 p.
  • Richtmyer R.D., Morton K.W. Difference methods for initialvalue problems. New York, John Wiley & Sons, 1967.
  • Karpinos D.M. Kompozitsionnye materialy. Spravochnik [Composite materials. Reference Book]. Kiev, Naukova dumka, 1985. 592 p.
  • Yankovskii A.P. Opredelenie termouprugih harakteristik prostranstvenno armirovannyh voloknistyh sred pri obshhej anizotropii materialov komponent kompozicii. 2. Sravnenie s jeksperimentom [Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 2. Comparison with experiment]. Mehanika kompozitnyh materialov [Mechanics of Composite Materials], 2010, vol. 46, no. 6, pp. 659–666.
  • Arutyunian R.A. Problema deformatsionnogo stareniya i dlitel’nogo razrusheniya v mekhanike materialov [Problem of deformation ageing and long destruction in mechanics of materials]. Saint-Petersburg, Izdatelsvo S.-Peterburgskogo universiteta, 2004. 252 p.