Title of the article



KOMAROV Aleksandr I., Сand. Techn. Sc., Head of the Sector of Metallurgy and Magnetic Structurescopy of Steel and Alloys, Joint Institute of Mechanical Engineering of the National Academy of Sciences, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KOMAROVA Valentina I., Сand. Phys.-Math. Sc., Associate Professor, Leading Researcher of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the National Academy of Sciences, Minsk, The Republic of Belarus

ORDA Dmitriy V., Junior Researcher of the Laboratory of Metallurgy in Engineering, Joint Institute of Mechanical Engineering of the National Academy of Sciences, Minsk, The Republic of Belarus

Year 2016 Issue 1 Pages 81-86
Type of article RAR Index UDK 669.715 Index BBK  

The synthesis of carbide-corundum filler based on titanium oxide by the method of chemical vapor deposition in a reducing atmosphere of ammonia and hydrogen has been investigated. The data analysis shows that the synthesized filler includes nanoscale high-melting compounds — carbide titanium and corundum. It is shown that the introduction of 1 wt.% of this nanofiller is accompanied by the dispersion of the structural components of the alloy not less than 2 times, it provides the microhardness increase of the α-phase by 1,5 times and eutectic by 2 times, the coefficient of friction decrease by 4–8 times, multiple increase of wear resistance of the composites obtained, due to the lack of wear of samples of castings for the entire test cycle of the obtained composites, whereas wear rate of the sample from GK-AlSi12(Cu) alloy at a load of 20 MPa was ~36 mg/m.


nanosized refractory filler, ceramic nanoparticles, structure, aluminum alloy, micro-hardness, friction coefficient, wear resistance

  You can access full text version of the article.
  • Fridljander I.N. Metallovedenie aljuminija i ego splavov [Metallurgy aluminum and its alloys]. Moscow, Metallurgy, 1983. 522 p.
  • Stroganov G.V., Rosenberg V.A., Gershman G.B. Splavy aljuminija s kremniem [Aluminum alloys with silicon]. Moscow, Metallurgy, 1977. 272 p.
  • Mondolfo L.F. Struktura i svojstva aljuminievyh splavov: per. s angl. [Structure and properties of aluminum alloys: translation from English]. Moscow, Metallurgy, 1979. 640 p.
  • Maltsev M.V. Metallografija promyshlennyh cvetnyh metallov i splavov [Metallography of industrial non-ferrous metals and alloys]. Moscow, Metallurgy, 1970. 368 p.
  • Boom E.A. Priroda modificirovanija splavov tipa silumin [The nature of the modification type alloys silumin]. Moscow, Metallurgy, 1972. 70 p.
  • Komarov A.I. Sintez nanostrukturirovannyh tugoplavkih napolnitelej, ih vlijanie na strukturu i svojstva siluminov [Synthesis of nanostructured refractory fillers, their influence on the structure and properties of silumins]. Perspektivnye materialy i tehnologii: monografija v 2 t. [Advanced materials and technologies: monograph in 2 volumes]. Vitebsk, UO “VSTU”, 2015, vol. 2, part 12, pp. 202–223.
  • Chernysheva T.A., Soboleva L.I., Kalashnikov I.E., Bolotov L.K. O modificirovanii lityh aljumomatrichnyh kompozicionnyh materialov tugoplavkimi nanorazmernymi chasticami [About the modification of cast aluminummatrix composites refractory nanoparticles]. Metally [Metals], 2009, no. 1, pp. 79–87.
  • Vityaz P.A., Komarov A.I., Komarova V.I., Shipko A.A., Ovchinnikov V.V., Kovaleva S.A. Vlijanie fazovogo sostava nanostrukturirovannogo tugoplavkogo modifikatora na strukturu i tribotehnicheskie svojstva splava AK12M2MgN [The effect of the phase composition of nanostructured refractory modifier on the structure and tribological properties of the alloy AK12M2MgN]. Trenie i iznos [Friction and wear], 2013, vol. 34, no. 5, pp. 435–445.
  • Vityaz P.A., Komarov A.I., Komarova V.I., Shipko A.A., Senjut V.T. Sozdanie nanostrukturirovannyh kompozicionnyh modifikatorov dlja splavov aljuminija [Creating nanostructured composite modifiers for aluminum alloys]. Dokl. NAN Belarusi [Reports of the National Academy of Sciences], 2011, vol. 55, no. 5, pp. 91–99.
  • Krushenko G.G., Filkov M.N. Modificirovanie aljuminievyh splavov nanoporoshkami [Modification of aluminum alloy nanopowders]. Nanotehnika [Nanotechnics], 2007, vol. 12, no. 4, pp. 38–44.
  • Shouvik Ghosh, Prasanta Sahoo, Goutam Sutradhar. Wear behavior of Al-SiCp metal matrix composites and optimization using Taguchi method and grey relational analysis. Journal of Minerals & Materials Characterization & Engineering, 2012, vol. 11, pp. 1085–1094.
  • Ram Naresh Rai [et al.]. Forming behavior of Al-TiC in-situ composites. Materials Science Forum, 2013, vol. 765, pp. 418–422.
  • Verresh Kumar G.B. [et al.]. Studies on Al6061-SiC and Al7075-Al2O3 metal matrix composites. Journal of Minerals & Materials Characterization & Engineering, 2010, vol. 9, no. 1, pp. 43–55.
  • Keshavamurthy R. [et al.]. Microstructure and mechanical properties of Al7075-TiB2 in-situ composite. Research Journal of material sciences, 2013, vol. 1(10), pp. 6–10.
  • Vijaya Ramnath B. [et al.]. Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metel matrix composites. Materials and Design, 2014, vol. 58, pp. 332–338.
  • Cun-Zhu Nie, Jia-Liang Liu, Di Zhang Production of Boron Carbide reinforced 2024 aluminum matrix composites by mechanical alloying. Materials Transactions, 2007, vol. 48, no. 5, pp. 990–995.
  • Vijaya Ramnath B. [et al.]. Aluminium metal matrix composites – a review. Rev. Adv. Mater. Sci, 2014, vol. 38, pp. 55–60.
  • Fu P.R.K. [et al.]. Wear behaviour of Al-SiC and Al2O3 matrix composites sliding against automobile friction material. PCO Proceeding 2013 based on AIP Guide, 2013, vol. 2008, pp. 249–253.
  • Verresh Kumar G.B., Rao C.S.P., Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites – a review. Journal of Minerals & Materials Characterization & Engineering, 2011, vol. 10, no. 1, pp. 59–91.
  • Albiter A. [et al.]. Microstructure and heat-treatment response of Al-2024/TiC composites. Materials Science and Engineering, 2000, vol. 289A, pp. 109–115.
  • Mikheev R.S., Chernyshova T.A. Aljumomatrichnye kompozicionnye materialy s karbidnym uprochneniem dlja reshenija zadach novoj tehniki [Aluminum-matrix composites with carbide reinforcement to meet the challenges of new technology]. Moscow, company CPI “Mask”, 2013. 356 p.
  • Samsonov G.V., Vinitsky I.M. Tugoplavkie soedinenija: Spravochnik [Refractory compounds: Reference]. Moscow, Metallurgy, 1976. 560 p.
  • Matrenin S.V., Slosman A.I. Tehnicheskaja keramika: Uchebnoe posobie [Technical ceramics: Textbook]. Tomsk, Publishing house TPU, 2004. 75 p.