Smart Search 

Title of the article



SOSNOVSKIY Leonid A., D. Sc. in Eng., Prof., Director, S&P GROUP TRIBOFATIGUE Ltd., Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

Year 2019 Issue 2 Pages 66–77
Type of article RAR Index UDK 620.178.16; 620.178.3 Index BBK  

To date, many laws of Nature have been discovered. The knowledge of each of them led to the accelerated development of the relevant sections of science and further, as a rule, to progress in any practical area of the community of people. The empirical law of dry friction [1, 2], first formulated by Leonardo da Vinci 500 years ago, went down in history of technology as one of the most applicable laws in engineering calculations [3]. Moreover, our worldview is unthinkable without an understanding of the general processes of movement with friction (as  well as movement without friction). All this gives grounds to say: “Friction is an amazing phenomenon of nature” (D. Garkunov). Two hundred years later (after da Vinci) Amonton M., Coulomb C.A., and Euler L. [4–7] made a decisive contribution to the substantiation and understanding of the law of dry friction, and it became classical: the force of sliding friction is proportional to the contact load. Studies show that the classical friction law for the tribo-fatigue system is inaccurate and, therefore, inapplicable. It was established experimentally that the error in estimating the coefficient of friction in a tribo-fatigue system (for example, a “wheel — rail” type, etc.) reaches 60...70 % or more, if we use the classical law of friction for its analysis. Therefore, there is a problem of adjusting the classical law of friction. A set of theoretical and experimental studies was carried out, the results of which make it possible to formulate a generalized law of friction: the friction force is proportional to both contact and non-contact volume loads, if the latter excites a cyclic stress (strain) field in the friction zone. This law describes all the experimental results (more than 100 values of the friction coefficient) with an error of no more than ±6 %. The  widespread use of the proposed generalized law of friction in the engineering is considered as a very urgent task. In  conclusion of the article, some directions for further research (theoretical and experimental) are formulated. The  article is published in three reports.


In  conclusion of the article, some directions for further research (theoretical and experimental) are formulated. The  article is published in three reports.

  1. Fizicheskiy entsiklopedicheskiy slovar [Physical encyclopaedic dictionary]. Mosow, Bolshaya sovetskaya entsiklopediya Publ., 1983. 928 p.
  2. Encyclopedia of Tribology: in 6 vol. Springer, 2013. 4139 p.
  3. Zhuravlev V.F. 500 let istorii zakona sukhogo treniya [500  years of history of the law of dry friction]. Vestnik MGTU im.   N.E. Baumana. Seriya “Estestvennye nauki” [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], 2014, no. 2, pp. 21–31.
  4. Leonardo da Vinchi. Izbrannye estestvenno-nauchnye proizvedeniya [Leonardo da Vinci. Selected natural-scientific works]. Moscow, AN SSSR Publ., 1955. 1028 p.
  5. Amontons M. De la résistance causee dans les machines. Histoire de L’Academie Royale des Sciences, 1699, pp. 206–222.
  6. Euler L. Sur la diminution de la résistance du frottement. Histoire de L’Academie Royale des Sciences et Belles Lettres, 1748, vol. 4, pp. 133–148.
  7. Coulomb C.A. Theorie des machines simples, en ayant égard au frottement de leurs parties, et a la roideur des Cordages. Mémoires de mathématique et de physique, présentés a l'Académie Royale des Sciences, par divers Savans, et lus dans ses Assemblées, 1785, vol. 10, pp. 161–332.
  8. Kragelskiy I.V., Shchedrov V.S. Razvitie nauki o trenii. Sukhoe trenie [Development of science of friction. Dry friction]. Moscow, Akademiya nauk SSSR Publ., 1956. 237 p.
  9. Frolov K.V., et al. Sovremennaya tribologiya: Itogi i perspektivy [Modern tribology: Conclusions and prospects]. Moscow, Mashinostroenie Publ., 2008. 480 p.
  10. Tomlinson G. A molecular theory of friction. Philosophical Magazine, 1929, vol. 7, no. 46, pp. 907–939.
  11. Bowden F.P., Tabor D. Friction and Lubrication of Solids. Part  II. London, Oxford University Press, 1964.
  12. Liu J. Sliding friction of copper. Mechanisms of solid friction, 1964, pp. 163–174.
  13. Rigney D.A., Hirth J.P. Plastic deformation and sliding friction of metals. Wear, 1979, vol. 53, pp. 345–370.
  14. Tsuya Y. Microstructures of wear, friction and solid lubrication. Mechanical Engineering Laboratory, Igusa, Saginamiku, Tokyo, Japan. Technical Report 81, 1976, pp. 50–65.
  15. Sherbakov S.S. Izmenenie sily i koeffitsienta treniya pri deystvii vnekontaktnoy nagruzki (teoreticheskiy analiz) [Change of force and friction coefficient under the action of non-contact load (theoretical analysis)]. Vestnik BelGUTa: Nauka i transport [Herald of BelSUT: Science and transport], 2016, no. 1(32), pp. 110–115.
  16. Fedorov S.V. Energeticheskaya model koeffitsienta treniya skolzheniya [Energy model of sliding friction coefficient]. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Fundamentalnye issledovaniya i innovatsionnye tekhnologii v mashinostroenii-2014 (FRITME-2014)” [Proc. International scientific and technical conference “Fundamental research and innovative technologies in mechanical engineering-2014 (FRITME-2014)”]. Moscow, 2014, pp. 351–356.
  17. Deryagin B.V. Molekulyarnaya teoriya treniya i skolzheniya [Molecular theory of friction and sliding]. Zhurnal fizicheskoy khimii [Journal of physical chemistry], 1934, vol. 5, no. 9, pp. 1165–1176.
  18. Alexeyev N.M., et al. Novoe o strukturnykh osobennostyakh treniya tverdykh tel [New about structural features of solids friction]. Trenie i iznos [Friction and wear], 1988, vol. 9, no. 6, pp. 965–974.
  19. Alexeyev N.М. On the motion of material in the border layer in solid state friction. Wear, 1990, vol. 139, pp. 33–48.
  20. Epifanov G.I. Zavisimost sily treniya ot normalnoy nagruzki [Dependence of friction force on basic load]. Ob osnovnom zakone treniya. Sukhoe trenie [About main law of friction. Dry friction], 1961, p. 204.
  21. Knott J.F. Fundamentals of fracture mechanics. London, Butterworths, 1973. 273p.
  22. Suh N.P., Sridharan P. Relationship between the coefficient of friction and the wear rate of metals. Wear, 1975, vol. 34, no. 3, pp. 291–299.
  23. Suh N.P. Tribophysics. Englewood Cliffs, Prentice-Hall, 1986. 498 p.
  24. Pozhbelko V.I. Novye analiticheskie zakony i universalnye konstanty predelnogo treniya i iznosa treniya tverdykh tel [New analytical laws and universal constants of ultimate friction and friction wear of solids]. Trenie, iznos, smazka [Friction, wear, lubrication], 2010, vol. 13, no. 43, pp. 1–9.
  25. Armstrong-H’elouvry B., Dupont P., Canudas de Wit C. A  survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, no. 30, pp. 1083–1138.
  26. Dahl P.R. A solid friction model. The Aerospace Corporation. Technical report TOR-0158(3107-18)-1, 1968. 31 p.
  27. Dahl, P.R. Measurement of solid friction parameters of ball bearings. The Aerospace Corporation. Interim report TR-0077(2901-03)-3, 1977. 25 p.
  28. Gafvert M. Comparisons of two dynamic friction models. Proc. 1997 IEEE International Conference on Control Applications, Hartford, CT, 1997, pp. 386–391.
  29. Dupont P., et al. Single state elastoplastic friction models. IEEE Transactions on Automatic Control, 2002, no. 47(5), pp. 787–792.
  30. Swevers J., et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 2000, no. 45(4), pp. 675–686.
  31. Lampaert V., Swevers J., Al-Bender F. Modification of the leuven integrated friction model structure. IEEE Transactions on Automatic Control, 2002, no. 47(4), pp. 683–687.
  32. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2007. 434 p.
  33. Sherbakov S.S., Sosnovskiy L.A. Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 407 p.
  34. Kragelskiy I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos [Fundamentals of calculations on friction and wear]. Moscow, Mashinostroenie Publ., 1977. 528  p.
  35. Sosnovskiy L.A., Troshchenko V.T., Makhutov N.A., Gao Wang Zheng, Bogdanovich A.V., Sherbakov S.S. Iznosoustalostnye povrezhdeniya i ikh prognozirovanie (tribofatika) [Wear-fatigue damages and their prediction (tribo-fatigue)]. Gomel, Kiev, Moscow, Wuhan, 2001. 170 p.
  36. Sosnovskiy L.A. Zakon treniya: ot tribologii k tribofatike. Soobshchenie 1. Klassicheskiy zakon (sukhogo) treniya i neobkhodimost ego korrektirovki [Law of friction: from tribology to tribo-fatigue. Report 1. Classical law of (dry) friction and need for its adjustment]. Mekanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2019, no. 1(46), pp. 64–76.
  37. Trenie. Koeffitsienty treniya. Tribotekhnika – nauka o trenii [Friction. Coefficient of friction. Tribology – the science of friction]. Available at: (accessed 20 October 2018).
  38. Bhushan B. Modern tribology handbook. Boca Raton, CRC Press, 2001. 1690 p.
  39. Johnson K.L. Contact Mechanics. Cambridge, Cambridge University Press, 1987. 452 p.
  40. Vermeulen P.J., Johnson K.L. Contact of Non Spherical Bodies Transmitting Tangential Forces. Journal of Applied Mechanics, 1964, vol. 31, no. 2, pp. 338–340.
  41. Ishlinskiy A.Yu. Mekhanika: idei, zadachi, prilozheniya [Mechanics: ideas, tasks, applications]. Moscow, Nauka Publ., 1985. 624 p.
  42. Goryacheva I.G. Mekhanika friktsionnogo vzaimodeystviya [Mechanics of friction interaction]. Moscow, Nauka Publ., 2001. 478 p.